Complimentary Copy—Not For Sale

NEW SYLLABUS MATHEMATICS WORKBOOK FULL SOLUTIONS

A Comprehensive Mathematics Programme for Grade 7

Consultant • Dr Yeap Ban Har Authors • Dr Joseph Yeo • Teh Keng Seng • Loh Cheng Yee • Ivy Chow • Neo Chai Meng • Jacinth Liew • Ong Chan Hong

ANSWERS

Chapter 1 Real Numbers and Approximation	(e) $1.921 68 \div 62.8$
Basic	$=\frac{1.92168}{1.92168}$
Dusic	62.8
1. (a) 1 4 4.7 3 5	= <u>19.2168</u>
× 0.1 5	628
7 2 3 6 7 5	0.0 3 0 6
+ 1 4 4 7 3 5	628) 1 9.2 1 68
2 1.7 1 0 2 5	<u>-0</u>
$\cdot 144735 \times 0.15 - 2171025$	192
(b) 0.25	$\frac{-0}{1021}$
	1921
$\frac{20090}{210}$	$\frac{-1884}{276}$
+ 315	0
$\frac{+313}{003360}$	$\frac{0}{3768}$
	- 3768
$\therefore 0.35 \times 0.096 = 0.0336$	0
(c) 1.84	
× 0.0 9 2	$\therefore 1.92168 \div 62.8 = 0.0306$
368	(f) $0.00348 \div 0.048$
+ 1 6 5 6	$=\frac{0.00348}{0.048}$
0.1 6 9 2 8	0.048
$1.84 \times 0.092 = 0.169.28$	$L = \frac{3.48}{48}$
(d) $4.86 \div 1.20$	48
486	$\frac{0.0725}{48\sqrt{2.48}}$
$=\frac{4.80}{1.20}$	48) 5.48
486	3.4
$=\frac{100}{120}$	- 0
4.0 5	3 4 8
120) 4 8 6	-3 36
<u>-480</u>	120
60	- 96
	240
600	- 240
-600	0
	$\therefore 0.003 \ 48 \div 0.048 = 0.0725$
$\therefore 486 \div 120 = 4.05$ 2.	(a) $5.3 - (-4.9)$
	= 5.3 + 4.9
	= 10.2
	(b) $3.3 + (-2.7)$
	= 3.3 - 2.7
	= 0.6
	(c) $-15.4 + 8.9$
	= -(15.4 - 8.9)
	= -6.5

(d) -17.3 - 6.25= -(17.3 + 6.25)= -23.55**3.** (a) 789 500 (to the nearest 100) (b) 790 000 (to the nearest 1000) (c) 790 000 (to the nearest 10 000) **4.** (a) 2.5 (to 1 d.p.) (b) 18.5 (to 1 d.p.) (c) 36.1 (to 1 d.p.) (d) 138.1 (to 1 d.p.) **5.** (a) 4.70 (to 2 d.p.) (**b**) 14.94 (to 2 d.p.) (c) 26.80 (to 2 d.p.) (**d**) 0.05 (to 2 d.p.) **6.** (a) 4.826 (to 3 d.p.) (**b**) 6.828 (to 3 d.p.) (c) 7.450 (to 3 d.p.) (d) 8.445 (to 3 d.p.) (e) 11.639 (to 3 d.p.) (f) 13.451 (to 3 d.p.) (g) 32.929 (to 3 d.p.) (h) 0.038 (to 3 d.p.) **7.** (a) 36.3 (to 1 d.p.) (b) 36 (to the nearest whole number) (c) 36.260 (to 3 d.p.) 8. (a) 984.61 (to 2 d.p.) (b) 984.6 (to 4 s.f.) (c) 984.608 (to 3 d.p.) (d) 984.61 (to the nearest hundredth) **9.** (a) 14.0 kg (to the nearest 0.1 kg) (b) 57.5 kg (to the nearest 0.1 kg) (c) 108.4 kg (to the nearest 0.1 kg) (d) 763.2 kg (to the nearest 0.1 kg) **10.** (a) 7.0 cm² (to the nearest $\frac{1}{10}$ cm²) **(b)** 40.1 cm² (to the nearest $\frac{1}{10}$ cm²) (c) 148.3 cm² (to the nearest $\frac{1}{10}$ cm²) (d) 168.4 cm² (to the nearest $\frac{1}{10}$ cm²) **11.** (a) 5620 km (to the nearest 10 km) (b) 900 cm (to the nearest 100 cm) (c) 2.45 g (to the nearest $\frac{1}{100}$ g) (d) PKR 50 000 (to the nearest PKR 10 000) 12. The calculation is $297 \div 19.91$. 297 ÷ 19.91 ≈ 300 ÷ 20 = 15 (to 2 s.f.) 15 litres of petrol is used to travel 1 km.

Intermediate

13. (a)
$$\frac{0.25}{0.05} \times \left(-\frac{0.18}{1.3}\right)$$

 $= \frac{25}{5} \times \left(\frac{-1.8}{13}\right)$
 $= 5 \times \left(\frac{-1.8}{13}\right)$
 $= -\frac{9}{13}$
(b) $\frac{0.0064}{0.04} \times \left(-\frac{1.8}{0.16}\right)$
 $= \frac{0.64}{4} \times \left(-\frac{180}{16}\right)$
 $= 0.16 \times \left(-\frac{45}{4}\right)$
 $= -1.8$
(c) $(-0.3)^2 \times \left(\frac{-1.4}{0.07}\right) - 0.78$
 $= \left(-\frac{3}{10}\right)^2 \times \left(\frac{-140}{7}\right) - 0.78$
 $= \left(\frac{9}{100}\right) \times (-20) - 0.78$
 $= -1.8 - 0.78$
 $= -2.58$
(d) $(-0.4)^3 \times \left(\frac{-3.3}{0.11}\right) + 0.123$
 $= \left(-\frac{4}{10}\right)^3 \times \left(\frac{-3.3}{0.11}\right) + 0.123$
 $= \left(-\frac{64}{1000}\right) \times \left(-30\right) + 0.123$
 $= 1.92 + 0.123$
 $= 1.92 + 0.123$
 $= 2.043$

14.

Reservoir	Α	В	С	D
Water level	-2 + 6 + 8	+1 + 3 - 7	-3 - 1 - 2	-5 + 9 - 1
	= 12	= -3	= -6	= 3

- (a) Reservoir A caught the most rain.
- (b) Reservoir C caught the least rain.
- (c) Reservoir **D** because 3 > -3.

15. Let the length of shorter piece of rope be x m. Therefore, length of the longer piece of rope = $\frac{5}{4}x$ m.

$$x + \frac{5}{4}x = 6.3$$
$$\frac{4}{4}x + \frac{5}{4}x = 6.3$$
$$\frac{9}{4}x = 6.3$$
$$x = 6.3 \times \frac{4}{9}$$
$$x = 2.8$$

 \therefore Length of the shorter piece of rope is 2.8 m 16. Number of cups of flour Sarah used

$$= \left(2\frac{1}{2} \times 9\right) + \left(2\frac{3}{4} \times 3\right)$$
$$= \left(\frac{5}{2} \times 9\right) + \left(\frac{11}{4} \times 3\right)$$
$$= \left(\frac{45}{2}\right) + \left(\frac{33}{4}\right)$$
$$= \frac{90}{4} + \frac{33}{4}$$
$$= \frac{123}{4}$$
$$= 30\frac{3}{4}$$

17. Number of students in class A

$$= \frac{4}{19} \times 247$$
$$= 52$$

Number of students in class that travel to school by bus

$$= \left(\frac{8}{13} \times 52\right) + 7$$
$$= 32 + 7$$
$$= 39$$

Therefore, number of students in class A who do not travel by bus

= 52 - 39

18. (i) Fraction of cost price of refrigerator that Anusha

9

pays
=
$$1 - \frac{3}{10} - \frac{9}{20}$$

= $\frac{20}{20} - \frac{6}{20} - \frac{9}{20}$
= $\frac{5}{20}$
= $\frac{1}{4}$

(ii) Cost of refrigerator

= PKR 525 ÷
$$\frac{1}{4}$$

= PKR 525 × 4
- PKR 2100

PKR 2100

Advanced

19.
$$\left\{ \left(5\frac{3}{4} - 2\frac{4}{7} + \left(-\frac{33}{8} \right) - \left(-\frac{1}{56} \right) \right)^2 - \sqrt[3]{\frac{8}{216}} \times \left[-\sqrt{\frac{3}{7}} - \left(-0.875 \right)^3 \right] \right\}$$
$$\div \left(\frac{\sqrt{35} - \sqrt[3]{29}}{-\tilde{} + \sqrt{-1\frac{1}{2}} \times \left(-\frac{5}{8} \right)} \right) = 0.866 \text{ (to 3 d.p.)}$$

OXFORD

Chapter 2 Direct and Inverse Proportions

Basic

1. Cost of 15 *l* of petrol = $\frac{PKR \ 14.70}{7} \times 15$ = PKR 31.50 2. Time taken for 1 tap to fill the bath tub = 15×2 = 30 minutes Time taken for 3 taps to fill the bath tub = $\frac{30}{3}$

= 10 minutes

Intermediate

3. (i) a = kbWhen b = 15, a = 75, 75 = k(15) $k = \frac{75}{15}$ = 5 $\therefore a = 5b$ When b = 37.5, a = 5(37.5)= 187.5(ii) When a = 195, 195 = 5b $b = \frac{195}{5}$ = 39 **4.** w = ktWhen t = 0.3, w = 1.8, 1.8 = k(0.3) $k = \frac{1.8}{0.3}$ = 6 $\therefore w = 6t$

:. w = 6tWhen t = 2.5, w = 6(2.5)

= 15

 \therefore 15 g of silver will be deposited.

5. $H = kd^{3}$ When d = 6, H = 120, $120 = k(6)^{3}$ = 216k $k = \frac{120}{216}$ $= \frac{5}{9}$ $\therefore H = \frac{5}{9}d^{3}$ When d = 9, $H = \frac{5}{9}(9)^{3}$ = 405

∴ The shaft can transmit 405 horsepower.

6. Number of workers to complete in 1 day = 6×8 = 48

Number of workers to complete in 12 days = $\frac{48}{12}$ = 4

Chapter 3 Application of Mathematics in **Practical Situations**

Basic

1. (i)
$$\frac{\text{Profit}}{\text{Original price}} \times 100\% = 15\%$$

 $\frac{150}{\text{Original price}} \times 100\% = 15\%$
Original price $= \frac{150 \times 100}{15} = \text{PKR } 1000$
(ii) Profit = selling price - cost price
 $150 = \text{selling price} - 1000$
Selling price of watch = $150 + 1000 = \text{PKR } 1150$
2. (i) $\frac{\text{Discount}}{\text{Marked price}} \times 100\% = 8\%$
 $\frac{112}{\text{Marked price}} \times 100\% = 8\%$
Marked price $= \frac{112 \times 100}{8} = \text{PKR } 1400$
(ii) Discount = marked price - sale price
 $\text{PKR } 112 = \text{PKR } 1400 - \text{sale}$
price
Sale price of the iPads = 900×15
 $= \text{PKR } 13 500$
Increase = $\text{PKR } 13 500 - \text{PKR } 10 000$
 $= \text{PKR } 3500$
(i) Percentage increase $= \frac{\text{Increase}}{\text{Cost price}} \times 100\%$
 $= \frac{3500}{10000} \times 100\%$
 $= 35\%$
(ii) Percentage increase $= \frac{\text{Increase}}{\text{Selling price}} \times 100\%$
 $= \frac{3500}{13500} \times 100\%$
 $= 25.9\%$ (to 3 s.f.)
4. 107% of the marked price $= 27.20$
 $\frac{107}{100} \times \text{ marked price} = 27.20 \times \frac{107}{100}$
 $= 27.20 \times \frac{100}{107}$
 $= \text{PKR } 25.42$

5. (a) Amount of commission he receives = 15% of PKR 50 000

$$=\frac{15}{100} \times 50\ 000$$

(**b**) Let PKR *x* be the signing bonus. 15% of PKR x = PKR 4800

$$\frac{15}{100} \times x = 4800$$
$$x = 4800 \div \frac{15}{100}$$
$$= 4800 \times \frac{100}{15}$$
$$= 32\ 000$$

The amount of signing bonus is PKR 32 000.

Intermediate

- 6. (i) Percentage point is the difference between two percentages. Percentage point of candidate C and A = 42 - 7= 35% Percentage point of candidate B and A = 39 - 7= 32%
 - (ii) To find the total number of voters,

Method 1

Number of people who did not vote = 20% of 15 000

$$=\frac{20}{100} \times 15\ 000$$

= 3000

Number of people who voted

 $= 12\ 000$

Method 2

Percentage of people who voted = 100% - 20% = 80%Number of people who voted = 80% of 15 000 $=\frac{80}{100} \times 15\ 000$

 $= 12\ 000$

To find the number of votes for each candidate Number of people who voted for candidate A = 7% of 12 000

$$=\frac{7}{100} \times 12\ 000$$

= 840

Number of people who voted for candidate B

= 39% of 12 000 $=\frac{39}{100} \times 12\ 000$ = 4680Number of people who voted for candidate C= 42% of 12 000 $=\frac{42}{100} \times 12\ 000$ = 50407. Subscription + service charge = 110% of PKR 59.90 $=\frac{110}{100} \times 59.90$ = PKR 65.89Amount payable before GST = 113% of PKR 65.89 = PKR 74.4557 Total cost of the bill = 107% of PKR 74.4557 $=\frac{107}{100}$ × PKR 74.4557 = PKR 79.67 (to the nearest paisa) 8. Original price of the coffee = $3 \times 9 + 1 \times 13$ = PKR 40Selling price of the mixture of coffee = $\frac{1.25}{0.1} \times 4$ = PKR 50 $Profit = 50 - 40 = PKR \ 10$ Percentage profit = $\frac{10}{50} \times 100\%$ = 20% 9. Original cost of tea = $30 \times 32 + 20 \times 35$ = PKR 1660 Selling price of tea = $40 \times (30 + 20)$ = PKR 2000Profit = 2000 – 1660 = PKR 340 Percentage profit = $\frac{340}{1660} \times 100\%$ = 20.5% (to 3 s.f.) 10. Price of an item after 8% discount = 92% of PKR 45 $=\frac{92}{100} \times 45$ = PKR 41.40Price of an item after a further discount of 9% = 91% of PKR 41.40 $=\frac{91}{100} \times 41.40$ = PKR 37.67

She paid PKR 37.67 for the item.

11. 90% of the price which Junaid paid for the camera = PKR 414

Price Junaid paid for the camera = $414 \div \frac{90}{100}$ $=414 \times \frac{100}{90}$ = PKR 460115% of the original price of the camera = PKR 460 Original price of the camera = $460 \div \frac{115}{100}$ $=460 \times \frac{100}{115}$ = PKR 400The original price of the camera is PKR 400. **12.** Let the number of peaches be *x*. Cost price of 1 peach = PKR $\frac{294}{r}$ Selling price of 1 peach = 140% of PKR $\frac{294}{3}$ $=\frac{140}{100}\times\frac{294}{r}$ $= PKR \frac{411.6}{r}$ Amount collected from selling all the good peaches = 294 + 84 = PKR 378 $(x-16) \times \frac{411.6}{x} = 378$ 411.6(x - 16) = 378x411.6x - 378x = 6585.633.6x = 6585.6x = 196... Majeed bought 196 peaches. **13.** (a) $116\frac{2}{3}$ % of the marked price = PKR 420 1% of the marked price = $\frac{420}{116\frac{2}{2}}$ 100% of the marked price = $\frac{420}{116\frac{2}{3}} \times 100$

> = PKR 360The price paid by Tanveer is PKR 360.

(b) (i) Selling price of the display set

$$= \left(100 - 10\frac{1}{2}\right)\% \text{ of PKR } 420$$

= $89\frac{1}{2}\% \text{ of PKR } 420$
= $\frac{179}{2}\% \text{ of PKR } 420$
= $\left(\frac{179}{2} \div 100\right) \times 420$
= $\frac{179}{2} \times \frac{1}{100} \times 420$
= PKR 375.90

The selling price of the display set is PKR 375.90.

(ii) Percentage profit = $\frac{375.90 - 360}{360} \times 100\%$ = 4.42% (to 3 s.f.)

14. Amount of commission the salesman got

= 25% of PKR 5264

$$=\frac{25}{100} \times 5264$$

= PKR 1316

Total income = basic salary + commission

- = 520 + 1316
- = PKR 1836
- **15.** Total cost of the materials for building the fence without discount and goods tax

$$= 5 \times 25 + 6 \times 12 + 1 \times 10 + 12 \times \frac{15}{6} + 300 \times \frac{10}{1000}$$

= 125 + 72 + 10 + 30 + 3
= PKR 240
Cost of the materials after discount = 90% of 240

 $=\frac{90}{100} \times 240$ = PKR 216

Cost of the materials with goods tax

- = 115% of PKR 216
- $=\frac{115}{100} \times 216$
- = PKR 248.40

The total amount that he has to pay, after discount and goods tax, is PKR 248.40.

16. (i) Total reliefs

= PKR 1000 + PKR 2000 + PKR 5000 + PKR 4500 + PKR 6000

- = PKR 18 500
- Taxable income = PKR 56 000 PKR 18 500 = PKR 37 500

TaxFirst PKR 30 000 : PKR 200Next PKR 7500 :
$$3.5\%$$
 of PKR 7500Next PKR 7500 : 3.5% of PKR 7500= PKR 262.50: Income tax payable = PKR 200 + PKR 262.50= PKR 462.50(iii) Percentage of tax = $\frac{PKR 462.50}{PKR 37 500} \times 100\%$

= 1.23% (to 3 s.f.)

$$= \left(\text{PKR } 15\ 000 \times \frac{5}{100} \right) + \left(\text{PKR } 45\ 000 \times \frac{3}{100} \right)$$
$$+ \left(\text{PKR } 40\ 000 \times \frac{2.5}{100} \right) + \left(\text{PKR } 58\ 500 \right)$$
$$- \text{PKR } 15\ 000$$

$$-$$
 PKR 45 000 $-$ PKR 40 000) $\times \frac{2}{100}$

= PKR 12 800

(ii)

Commission earned for selling a private house

$$= \left(PKR \ 15\ 000 \times \frac{5}{100} \right) + \left(PKR \ 45\ 000 \times \frac{3}{100} \right) + \left(PKR \ 45\ 000 \times \frac{3}{100} \right) + \left(PKR \ 40\ 000 \times \frac{2.5}{100} \right) + \left(PKR \ 1\ 085\ 000 - \frac{3}{100} \right) + \left(P$$

PKR 15 000 – PKR 45 000 – PKR 40 000)
×
$$\frac{2}{100}$$

(ii) Total commission received = PKR 22 800 + PKR 12 800

= PKR 35 600

Advanced

- 18. (i) Selling price of the condominium
 - = 90% of PKR 950 000

$$=\frac{90}{100} \times 950\ 000$$

(ii) Amount Manal received after paying the agent= 98% of PKR 855 000

$$=\frac{98}{100} \times 855\ 000$$

 $\left(\begin{array}{c} 7 \end{array} \right)$

(iii) Amount agent received from seller = PKR 855 000 - PKR 837 900 = PKR 17 100 Amount agent received from buyer = 5% of PKR 855 000 $=\frac{5}{100} \times 855\ 000$ = PKR 42 750 Total amount received by the agent $= 42\ 750 + 17\ 100$ = PKR 59 850 **19.** (i) Number of litres used = $\frac{PKR \ 3600}{PKR \ 2.00} = 1800$ litres (ii) Total distance travelled = 1800×16 = 28 800 km (iii) Total cost in 2011 = PKR 3600 + PKR 2000 + PKR 850 + PKR 880 = PKR 7330 (iv) Total cost in 2012 $= PKR 880 + \left(PKR 3600 \times \frac{100 + 5}{100}\right)$ + $\left(PKR\ 850 \times \frac{100 + 15}{100}\right)$ + $\left(PKR\ 2000 \times \frac{100 - 10}{100}\right)$ = PKR 880 + PKR 3780 + PKR 977.50 + PKR 1800 = PKR 7437.50 Increase = PKR 7437.50 - PKR 7330 = PKR 107.50 Percentage increase = $\frac{\text{PKR } 107.50}{\text{PKR } 7330} \times 100\%$ = 1.5% (to 2 s.f.)

New Trend

20. Let the original price of the toy be PKR x.

180% of x = 900 $\frac{180}{100} \times x = 900$ $x = 900 \div \frac{180}{100}$ $= 900 \times \frac{100}{180}$ = 500

The original price of the toy is PKR 500.

Chapter 4 Sets

Basic

- 1. (a) $A \cup B' = \{a, b, c, x, y, m, n\}$ (b) $A' \cap B' = \{m, n\}$ (c) $A \cap B' = \{a, b, c\}$ 2. (a) $A \cup B' = \{1, 2, 3, 4, 5, 7, 8\}$ (b) $A' \cap B' = \{4, 8\}$ (c) $A \cap B' = \{1, 2, 7\}$ 3. (a) $A' \cup B'$ U A (b) $A \cap B'$ (b) $A \cap B'$ U A (c) $A \cap B'$ (c) $A \cap B'$
- 4. $\mathbb{U} = \{x : x \text{ is an integer}, 1 \le x \le 14\} = \{1, 2, 3, ..., 13, 14\}$

$$P = \{x : x \text{ is a prime number}\} = \{2, 3, 5, 7, 11, 13\}$$
$$Q = \{x : x \text{ is a factor of } 12\} = \{1, 2, 3, 4, 6, 12\}$$

(b) (i) $P \cup Q' = \{2, 3, 5, 7, 8, 9, 10, 11, 13, 14\}$ (ii) $P' \cap Q' = \{8, 9, 10, 14\}$

(b) (i) $(A \cap B)' = \{3, 4, 6, 8, 9, 13\}$ (ii) $A' \cap B = \{6, 9\}$

- 6. $\mathbb{U} = \{x : x \text{ is an integer}, 1 \le x \le 12\} = \{1, 2, 3, ..., 11, 12\}$
 - $A = \{x : x \text{ is a prime number}\} = \{2, 3, 5, 7, 11\}$
 - $B = \{x : x \text{ is a multiple of } 3\} = \{3, 6, 9, 12\}$

- **(b)** $A \cap B' = \{2, 5, 7, 11\}$
- 7. (a) $B \cap A'$ (b) B'

Intermediate

- 8. (a) $A \cap B = \{e, x\}$
 - (**b**) $A \cup C' = \{a, b, e, d, x, h, m, y, z\}$
 - (c) $B \cup A' = \{e, x, h, m, n, k, y, z\}$
 - (d) $B' \cap C' = \{a, b, y, z\}$
 - (e) $A \cap B \cup C = \{e, x, d, k, n\}$
- **9.** $\mathbb{U} = \{\text{polygons}\}$
 - $A = \{$ quadrilaterals $\}$
 - $B = \{\text{regular polygons}\}$
 - (a) square or rhombus
 - (**b**) rectangle or parallelogram
- **10.** $\mathbb{U} = \{x : x \text{ is an integer, } 12 \le x \le 39\}$ = {12, 13, 14, ..., 37, 38, 39}
 - $A = \{x : x \text{ is a multiple of } 5\} = \{15, 20, 25, 30, 35\}$
 - $B = \{x : x \text{ is a perfect square}\} = \{16, 25, 36\}$
 - $C = \{x : x \text{ is odd}\} = \{13, 15, 17, \dots, 35, 37, 39\}$
 - (a) $A \cap B = \{25\}$
 - **(b)** $A \cap C = \{15, 25, 35\}$
 - (c) $B \cup C = \{13, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 36, 37, 39\}$
- **11.** $\mathbb{U} = \{x : x \text{ is an integer}\}$
 - $A = \{x : x > 4\}$
 - $B = \{x : -1 < x \le 10\}$
 - $C = \{x : x < 8\}$
 - (a) $A \cap B = \{x : 4 < x \le 10\}$
 - **(b)** $B \cap C = \{x : -1 < x < 8\}$
 - (c) $A' \cap B = \{x : -1 < x \le 4\}$
 - (d) $A' \cap C = \{x : x \le 4\}$

12. c **13.** $\mathbb{U} = \{x : x \text{ is whole number and } x \le 20\}$ $A = \{2, 4, 6, 8, 10, 12\}$ $B = \{1, 4, 9, 16\}$ (a) $A \cap B' = \{2, 6, 8, 10, 12\}$ **(b)** $A' \cap B = \{1, 9, 16\}$ (c) $A' \cap B' = \{3, 5, 7, 11, 13, 14, 15, 17, 18, 19, 20\}$ (d) $A' \cup B' = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ...\}$ 14, 15, 16, 17, 18, 19, 20} 14. $\mathbb{U} = \{(x, y) : x \text{ and } y \text{ are integers} \}$ $P = \{(x, y) : 0 < x \le 3 \text{ and } 0 \le y < 6\}$ $Q = \{(x, y) : 2 \le x < 8 \text{ and } 5 \le y \le 9\}$ $P \cap Q = \{(x, y) : 2 \le x \le 3 \text{ and } 5 \le y < 6\}$ x = 2, 3 and y = 5 $\therefore P \cap Q = \{(2, 5), (3, 5)\}$ **15.** $\mathbb{U} = \{a, b, c, d, e, f, g\}$ $A = \{a, c, f, g\}$ $B = \{a, c, g\}$ $C = \{b, c, e, f\}$ (i) $(A \cap B)' = \{b, d, e, f\}$ (ii) $A \cup C' = \{a, c, d, f, g\}$ **16.** $\mathbb{U} = \{ \text{all triangles} \}$ $A = \{\text{isosceles triangles}\}$ $B = \{$ equilateral triangles $\}$ $C = \{ right-angled triangles \}$ (a) $A \cup B = A$ (b) $B \cap C = \emptyset$ (c) $A \cap B = B$ **17.** (a) A = B(b) II R **18.** $\mathbb{U} = \{x : x \text{ is an integer}\}\$ $A = \{x : 20 < x \le 32\}$ $B = \{x : 24 \le x \le 37\}$ (a) $A \cap B = \{x : 24 \le x \le 32\}$ $= \{24, 25, 26, 27, 28, 29, 30, 31, 32\}$ **(b)** $A \cup B = \{x : 20 < x \le 37\}$ $= \{21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,$ 33, 34, 35, 36, 37} **19.** $\mathbb{U} = \{x : x \text{ is an integer}, 4 \le x \le 22\} = \{4, 5, 6, \dots, 22\}$ $A = \{x : x \text{ is a multiple of } 5\} = \{5, 10, 15, 20\}$ $B = \{x : x \text{ is a prime number}\} = \{5, 7, 11, 13, 17, 19\}$ $C = \{x : x \text{ is a factor of } 30\} = \{5, 6, 10, 15\}$ (a) $A \cup C = \{5, 6, 10, 15, 20\}$ **(b)** $B \cap C = \{5\}$

20. $\mathbb{U} = \{6, 8, 10, 12, 13, 14, 15, 16, 18, 20, 21\}$ $A = \{x : x \text{ is a multiple of } 3\} = \{6, 12, 15, 18, 21\}$ $B = \{x : 2x < 33\} = \{6, 8, 10, 12, 13, 14, 15, 16\}$ $A \cup B = \{6, 8, 10, 12, 13, 14, 15, 16, 18, 21\}$ **21.** $\mathbb{U} = \{x : x \text{ is a natural number}, 2 \le x \le 15\}$ $= \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\}$ $A = \{x : x \text{ is a multiple of } 3\} = \{3, 6, 9, 12, 15\}$ $B = \{x : x \text{ is even}\} = \{2, 4, 6, 8, 10, 12, 14\}$ $A' \cap B = \{2, 4, 8, 10, 14\}$ **22.** $\mathbb{U} = \{x : x \text{ is a positive integer}\}$ $A = \{x : 7 < 3x < 28\} = \{3, 4, 5, 6, 7, 8, 9\}$ $B = \{x : 3 < 2x + 1 < 25\} = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$ $C = \{x : 1 < \frac{x}{2} \le 9\}$ $= \{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18\}$ **23.** (a) $A' \cap B = B$ **(b)** $A \cup B' = B'$ **24.** $\mathbb{U} = \{x : x \text{ is a positive integer and } 20 \le x \le 90\}$ $A = \{x : x \text{ is a multiple of } 3\}$ $= \{21, 24, 27, 30, 33, 36, \dots, 90\}$ $B = \{x : x \text{ is a perfect square }\} = \{25, 36, 49, 64, 81\}$ $C = \{x : \text{unit digit of } x \text{ is } 1\} = \{21, 31, 41, 51, 61, 71, 81\}$ (i) $A \cap B = \{36, 81\}$ (ii) $A \cap C = \{21, 51, 81\}$ **25.** $\mathbb{U} = \{x : x \text{ is a positive integer and } 0 \le x \le 24\}$ $A = \{x : x \text{ is a prime number}\}$ $= \{2, 3, 5, 7, 11, 13, 17, 19, 23\}$ $B = \{x : 12 < 3x < 37\} = \{5, 6, 7, 8, 9, 10, 11, 12\}$ $A \cap B = \{5, 7, 11\}$ **26.** (a) $P \cup Q = P$ (b) $Q \cap P' = \emptyset$ **27.** (a) $A \cap B = A$ (b) $A \cup B = B$ **28.** $\mathbb{U} = \{\text{integers}\}$ $A = \{ \text{factors of } 4 \} = \{ 1, 2, 4 \}$ $B = \{ \text{factors of } 6 \} = \{ 1, 2, 3, 6 \}$ $C = \{ \text{factors of } 12 \} = \{ 1, 2, 3, 4, 6, 12 \}$ $D = \{ \text{factors of } 9 \} = \{ 1, 3, 9 \}$ (a) $A \cup B = \{1, 2, 3, 4, 6\}$ **(b)** $B \cap C = \{1, 2, 3, 6\}$ (c) $C \cap D = \{1, 3\}$

Advanced

- $A = \{$ polygons with all sides equal $\}$
- $B = \{$ polygons with all angles equal $\}$

 $C = \{\text{triangles}\}$

- $D = \{$ quadrilaterals $\}$
- (a) $A \cap C$ = equilateral triangle
- (**b**) $A \cap D$ = rhombus

31. $\mathbb{U} = \{x : x \text{ is an integer less than 22}\}$ $A = \{x : x \text{ is a prime number less than 20}\}$ $= \{2, 3, 5, 7, 11, 13, 17, 19\}$ $B = \{x : a < x < b\}$ For $A \cap B = \emptyset$, 8 < x < 10 or 14 < x < 16 $\therefore a = 8, b = 10 \text{ or } a = 14, b = 16.$ **32.** $A = \{(x, y) : x + y = 4\}$ $B = \{(x, y) : x = 2\}$ $C = \{(x, y) : y = 2x\}$ (a) $A \cap B = \{(x, y) : x = 2, y = 2\} = \{(2, 2)\}$ (b) $B \cap C = \{(x, y) : x = 2, y = 4\} = \{(2, 4)\}$ (c) $A \cap C = \{(x, y) : x + y = 4, y = 2x\}$ $= \left\{(x, y) : x = 1\frac{1}{3}, y = 2\right\}$ $= \left\{(1\frac{1}{3}, 2\frac{2}{3})\right\}$

New Trend

33. $\mathbb{U} = \{x : x \text{ is an integer}, 30 < x \le 40\}$ $= \{31, 32, 33, \dots, 39, 40\}$ $A = \{x : x \text{ is a multiple of } 3\} = \{33, 36, 39\}$ $B = \{x : 2x - 4 < 73\} = \{31, 32, 33, 34, 35, 36, 37, 38\}$ (a) $A' \cap B = \{31, 32, 34, 35, 37, 38\}$ (b) U A R 39 32 31 33 34 35 36 37 38

40

Chapter 5 Number Patterns

Basic

1. (a) When n = 1, 3(1) + 1 = 4When n = 2, 3(2) + 1 = 7When n = 3, 3(3) + 1 = 10The first three terms are 4, 7 and 10. **(b)** When n = 1, 2(1) - 7 = -5When n = 2, 2(2) - 7 = -3When n = 3, 2(3) - 7 = -1The first three terms are -5, -3 and -1. (c) When n = 1, $(1)^2 - 1 = 0$ When n = 2, $(2)^2 - 2 = 2$ When n = 3, $(3)^2 - 3 = 6$ The first three terms are 0, 2 and 6. (d) When n = 1, $2(1)^2 - 3(1) + 5 = 4$ When n = 2, $2(2)^2 - 3(2) + 5 = 7$ When n = 3, $2(3)^2 - 3(3) + 5 = 14$ The first three terms are 4, 7 and 14. (e) When n = 1, $\frac{(1)(1-1)}{2} = \frac{(1)(0)}{2} = 0$ When n = 2, $\frac{(2)(2-1)}{2} = \frac{(2)(1)}{2} = 1$ When n = 3, $\frac{(3)(3-1)}{2} = \frac{(3)(2)}{2} = 3$ The first three terms are 0, 1 and 3. (f) When n = 1, $\frac{2}{1+1} = 1$ When n = 2, $\frac{2}{2+1} = \frac{2}{3}$ When n = 3, $\frac{2}{3+1} = \frac{2}{4} = \frac{1}{2}$ The first three terms are 1, $\frac{2}{3}$ and $\frac{1}{2}$. Intermediate 2. (i) 6^{th} line: $\frac{1}{6 \times 7} = \frac{1}{6} - \frac{1}{7}$ 7th line: $\frac{1}{7 \times 8} = \frac{1}{7} - \frac{1}{8}$ (ii) $272 = p \times q$ Notice that q is 1 more than p. By trial and error, $16 \times 17 = 272$ $\therefore p = 16 \text{ and } q = 17$ (iii) $\frac{1}{100} - \frac{1}{101} = \frac{1}{100 \times 101} = \frac{1}{10100}$ **3.** (i) 7^{th} line: $7^3 - 7 = 336 = (7 - 1) \times 7 \times (7 + 1)$ (ii) 1320 is divisible by 10. Thus the factors of 1320 are 10, 11 and 12. $1320 = (11 - 1) \times 11 \times (11 + 1)$ $\therefore n = 11$

(iii) $19^3 - 19 = (19 - 1) \times 19 \times (19 + 1) = 6840$

4. (a) (i) The next four terms are 15 + 6 = 21, 21 + 7 = 28, 28 + 8 = 36 and 36 + 9 = 45. (ii) The next four terms are 35 + 21 = 56, 56 + 28 = 84, 84 + 36 = 120, and 120 + 45 = 165.**(b)** (i) 9th line: $9^3 - 9 = 720 = 6 \times 120$ 10^{th} line: $10^3 - 10 = 990 = 6 \times 165$ (ii) k = 6 $p = 6 \times 84 = 504$ Notice that the number of terms follow the number of terms for the sequence 0, 1, 4, 10, \dots , 84. Since the 8th term is 84, then $8^3 - 8 = 504 = 6 \times 84.$ $\therefore m = 8$ 5. (a) 3^{rd} line: $(1 + 2 + 3)^2 = 36 = (1)^3 + (2)^3 + (3)^3$ 4^{th} line: $(1 + 2 + 3 + 4)^2$ $= 100 = (1)^{3} + (2)^{3} + (3)^{3} + (4)^{3}$ **(b) (i)** When l = 7, $(1)^3 + (2)^3 + (3)^3 + (4)^3 + (5)^3 + (1)^$ $(6)^3 + (7)^3$ $= (1 + 2 + 3 + 4 + 5 + 6 + 7)^{2}$ $=(28)^{2}$ = 784 (ii) When 1 = 19, $(1)^{3} + (2)^{3} + (3)^{3} + (4)^{3} + (5)^{3} + (6)^{3} + \dots$ $+(19)^{3}$ $= (1 + 2 + 3 + 4 + 5 + 6 + \dots + 19)^{2}$ $=(190)^{2}$ $= 36\ 100$ (c) $(1 + 2 + 3 + ... + n)^2 = 2025 = (45)^2$ We observe that $45 = 40 + 5 = 4 \times 10 + 5$ (1+9) + (2+8) + (3+7) + (4+6) + 5= 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 $\therefore n = 9$ (d) $(1)^3 + (2)^3 + (3)^3 + \dots + (m)^3 = 78^2$ $(1 + 2 + 3 + 4 + 5 + \dots + m)^3 = 78^2$ $1 + 2 + 3 + 4 + 5 + \ldots + m = 78$ Consider 78 $= 6 \times 13$ = (1 + 12) + (2 + 11) + (3 + 10) + (4 + 9)+(5+8)+(6+7)= 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 $\therefore m = 12$

- 6.
- $1^{2} + 1^{2} + 2^{2} + 3^{2} = 3 \times 5$ $1^2 + 1^2 + 2^2 + 3^2 + 5^2 = 5 \times 8$ Notice that numbers along this column follow the sequence 1, 1, 2, 3, 5, 8, 13, ...
 - (i) 7^{th} line: $1^2 + 1^2 + 2^2 + 3^2 + 5^2 + 8^2 + 13^2$ $= 13 \times 21$
 - (ii) $1^2 + 1^2 + 2^2 + 3^2 + 5^2 + \dots + l^2 + m^2 = 55 \times n$ Since the left-hand side follows the given sequence, then l = 34 and m = 55. The right-hand side of the equation follows the given sequence too.
 - ∴ *n* = 89

110	209	308	407	506	605	704	803	902
121	220	319	418	517	616	715	814	913
132	231	330	429	528	627	726	825	924
143	242	341	440	539	638	737	836	935
154	253	352	451	550	649	748	847	946
165	264	363	462	561	660	759	858	957
176	275	374	473	572	671	770	869	968
187	286	385	484	583	682	781	880	979
198	297	396	495	594	693	792	891	990

(b) These are some of the possible patterns. For each column, from top cell to bottom cell, add 11 to each term to get the next term.

For each row, from left cell to right cell, add 99 to each term to get the next term.

For each diagonal, from left to right, add 10 to each term to get the next term.

(c) From the table,

 $550 \div 11 = 50 = 5^2 + 5^2 + 0^2$ $803 \div 11 = 73 = 8^2 + 0^2 + 3^2$:. The two multiples are 550 and 803.

Advanced

- 8. (a) Since the common difference is $11, T_n = 11n + ?$. The term before T_1 is $c = T_0 = 5 - 11 = -6$. \therefore General term of the sequence, $T_n = 11n - 6$.
 - 11n 6 = 100

11n = 106

 $n \approx 9.6$

Thus the largest two-digit number occurs when n= 9.

When n = 9, 11(9) - 6 = 93.

- (b) To find the formula of the general term, consider the following:
 - 8, 27, 64, 125, ... 2^3 , 3^3 , 4^3 , 5^3 , ... \therefore General term of the sequence = n^3 , $n = 2, 3, 4, 5, \ldots$ $n^3 = 1000$ n = 10Thus the first four-digit number occurs when n = 10. When n = 9, the largest three-digit number occurs.

When $n = 9, 9^3 = 729$.

- 9. (a) To find the formula of the general term, consider the following:
 - 4, 9, 16, 25, ...
 - $2^2, 3^2, 4^2, 5^2, \dots$
 - \therefore General term of the sequence = n^2 ,
 - $n = 2, 3, 4, 5, \ldots$
 - $n^2 = 100$
 - n = 10

1

- The smallest three-digit number is 100.
- (b) To find the formula of the general term, consider the following

 $2(3)^6 = 1458.$

New Trend

- 10. (a) Term is obtained by adding the two terms immediately above. (b) (i) The next two rows are the 6^{th} and 7^{th} rows. 6th row: 1 5 10 10 5 1 7th row: 1 6 15 20 15 6 1 (ii) Sum of the terms in row 1 = 1Sum of the terms in row 2 = 1 + 1 = 2Sum of the terms in row 3 = 1 + 2 + 1 = 4Sum of the terms in row 4 = 1 + 3 + 3 + 1 = 8Sum of the terms in row 5 = 1 + 4 + 6 + 4 + 1 = 16Sum of the terms in row 6 = 1 + 5 + 10 + 10 + 5 + 1 = 32Sum of the terms in row 7 = 1 + 6 + 15 + 20 + 15 + 6 + 1= 64 Yes, these sums form a pattern equal to 2^{n-1} . where n is the n^{th} row. (c) (i) Sum of terms in 11^{th} row = $2^{10} = 1024$ (ii) Sum of terms in k^{th} row = 2^{k-1} (d) (i) Number of terms in k^{th} row = k
 - (ii) The first two terms in the k^{th} row are 1 and k-1.

Chapter 6 Basic Algebra and Algebraic Manipulation

1. (a)
$$\frac{1}{3}x + \frac{1}{5}y - \frac{1}{9}x - \frac{1}{15}y$$

 $= \frac{1}{3}x - \frac{1}{9}x + \frac{1}{5}y - \frac{1}{15}y$
 $= \frac{3}{9}x - \frac{1}{9}x + \frac{3}{15}y - \frac{1}{15}y$
 $= \frac{2}{9}y + \frac{2}{15}y$
(b) $\frac{3}{4}a - \frac{1}{5}b + 3a - \frac{4}{7}b$
 $= \frac{3}{4}a + 3a - \frac{4}{7}b - \frac{1}{5}b$
 $= 3\frac{3}{4}a - \frac{20}{35}b - \frac{7}{35}b$
 $= 3\frac{3}{4}a - \frac{27}{35}b$
(c) $\frac{5}{6}c + \frac{8}{7}d - \frac{2}{9}c - \frac{5}{3}d$
 $= \frac{15}{18}c - \frac{4}{18}c + \frac{24}{21}d - \frac{35}{21}d$
 $= \frac{11}{18}c - \frac{11}{21}d$
(d) $5f - \frac{5}{7}h + \frac{7}{8}k - \frac{4}{3}f - \frac{4}{5}h + \frac{12}{11}k + \frac{7}{8}k$
 $= 3\frac{2}{3}f - \frac{25}{35}h - \frac{28}{35}h + \frac{96}{88}k + \frac{77}{88}k$
 $= 3\frac{2}{3}f - \frac{11}{35}h + 1\frac{85}{88}k$
2. (a) $5a + 3b - 2c + (\frac{3}{2}a + 2\frac{1}{2}b - 3\frac{1}{2}c)$
 $= 5a + 3b - 2c + 3\frac{1}{2}a + 2\frac{1}{2}b - 3\frac{1}{2}c$
 $= 8\frac{1}{2}a + 5\frac{1}{2}b - 5\frac{1}{2}c$
(b) $\frac{1}{2}[5y - 2(x - 3y)]$
 $= \frac{5}{2}y - (x - 3y)$
 $= \frac{5}{2}y - x + 3y$
 $= \frac{5}{2}y + 3y - x$

(c)
$$\frac{3}{4}[8q - 7p - 3(p - 2q)]$$

 $= \frac{3}{4}[8q - 7p - 3p + 6q)]$
 $= \frac{3}{4}[-7p - 3p + 6q + 8q]$
 $= \frac{3}{4}[-10p + 14q]$
 $= -\frac{30}{4}p + \frac{42}{4}q$
 $= \frac{21q - 15p}{2}$
(d) $\frac{3}{10}[3(5a - b) - 7(2a - 5b)]$
 $= \frac{3}{10}[15a - 3b - 14a + 35b]$
 $= \frac{3}{10}[15a - 14a + 35b - 3b]$
 $= \frac{3}{10}[a + 32b]$
 $= \frac{3}{10}[a + 32b]$
 $= \frac{3}{10}[a + 32b]$
(a) $\frac{2(5x - 1)}{3} - \frac{x - 3}{5}$
 $= \frac{2(5x - 1) \times 5}{3 \times 5} - \frac{(x - 3) \times 3}{5 \times 3}$
 $= \frac{50x - 10}{15} - \frac{(3x - 9)}{15}$
 $= \frac{50x - 10 - 3x + 9}{15}$
 $= \frac{50x - 10 - 3x + 9}{15}$
 $= \frac{50x - 3x + 9 - 10}{15}$
 $= \frac{47x - 1}{15}$
(b) $\frac{x}{2} + \frac{x - 3}{5} - \frac{x - 4}{4}$
 $= \frac{5x + 2x - 6}{10} - \frac{(x - 4)}{4}$
 $= \frac{7x - 6}{10} - \frac{(x - 4)}{4}$
 $= \frac{7x - 6}{10} - \frac{(x - 4)}{20}$
 $= \frac{14x - 12 - 5x + 20}{20}$
 $= \frac{9x + 8}{20}$

3.

Intermediate
(c)
$$\frac{x+5}{3} - \frac{2x-7}{6} + \frac{x}{2}$$

 $= \frac{2(x+5)}{6} - \frac{(2x-7)}{6} + \frac{x}{2}$
 $= \frac{2(x+5)}{6} - \frac{(2x-7)}{6} + \frac{x}{2}$
 $= \frac{2(x+5)}{6} - \frac{(2x-7)}{6} + \frac{x}{2}$
 $= \frac{17}{6} + \frac{3x}{6}$
 $= \frac{17}{6} + \frac{3x}{6}$
 $= \frac{17}{6} + \frac{3x}{6}$
 $= \frac{3x+17}{6}$
(d) $\frac{3x-7}{2} - \frac{x+4}{6} - \frac{3}{4}$
 $= \frac{15x-35-2x-8}{10} - \frac{3}{4}$
 $= \frac{15x-35-2x-8}{10} - \frac{3}{4}$
 $= \frac{15x-35-2x-8}{10} - \frac{3}{4}$
 $= \frac{15x-325-2x-8}{10} - \frac{3}{4}$
 $= \frac{2(13x-43)-15}{20}$
 $= \frac{2(13x-43)-15}{20}$
 $= \frac{26x-101}{20}$
 $= \frac{26x-101}{20}$
 $= \frac{26x-101}{20}$
 $= \frac{2(5x+5y-6)}{15} - \frac{3x-2y}{6}$
 $= \frac{5x+5y-6}{15} - \frac{3x-2y}{6}$
 $= \frac{5(x+5y-6)}{30} - \frac{5(3x-2y)}{30}$
 $= \frac{10x+10y-12-15x+10y}{30}$
 $= \frac{10x+10y-12-15x+10y}{30}$
 $= \frac{10x+10y-12}{30} - \frac{12}{2}$
 $= \frac{10x+10y-12}{30} - \frac{12}{30}$
 $= \frac{10x+10y-12}{30} - \frac{12}{30}$
 $= \frac{10x+10y-12}{30} - \frac{12}{30}$
 $= \frac{10x+20(3x)+50(\frac{1}{4}x)}{\frac{1}{4}x}$.
Total value of all the coins
 $= 10x+20(3x)+50(\frac{1}{4}x)$
 $= 10x+60x+\frac{50}{4}x$
 $= 82\frac{1}{2}x$ paisas

(iii) Ratio of number of 20-paisa coins to 50-paisa coins
= 5 : 3
5 parts is 3x.
1 part is
$$\frac{3x}{5}$$
.
3 parts is $\frac{3x}{5} \times 3 = \frac{9x}{5}$.
Total value of all the coins
= $10x + 20(3x) + 50\left(\frac{9x}{5}\right)$
= $10x + 60x + 90x$
= $60x$ paisas
7. (a) $\frac{3(x-2)}{3} + \frac{2(x+3)}{4}$
= $\frac{12(x-2)}{12} + \frac{6(x+3)}{12}$
= $\frac{12(x-2) + 6(x+3)}{12}$
= $\frac{12x-24 + 6x + 18}{12}$
= $\frac{18x-6}{12}$
= $\frac{3x-1}{2}$
(b) $\frac{5(3x+1)}{4} - \frac{7(5x-3)}{12}$
= $\frac{15(3x+1)}{12} - \frac{7(5x-3)}{12}$
= $\frac{45x+15-35x+21}{12}$
= $\frac{45x+15-35x+21}{12}$
= $\frac{45x+36}{12}$
= $\frac{5x+18}{6}$
(c) $1 + \frac{2x+1}{3} + \frac{4(x-3)}{6}$
= $\frac{3}{3} + \frac{2x+1+2(x-3)}{3}$
= $\frac{3+2x+1+2(x-3)}{3}$
= $\frac{3+2x+1+2(x-3)}{3}$
= $\frac{4x-2}{3}$

(d)
$$\frac{3x - 4y}{6} + \frac{x - 2y}{4} - \frac{x + y}{5}$$
$$= \frac{2(3x - 4y)}{12} + \frac{3(x - 2y)}{12} - \frac{x + y}{5}$$
$$= \frac{6x - 8y + 3x - 6y}{12} - \frac{x + y}{5}$$
$$= \frac{5(9x - 14y)}{12} - \frac{12(x + y)}{60}$$
$$= \frac{5(9x - 14y) - 12(x + y)}{60}$$
$$= \frac{45x - 70y - 12x - 12y}{60}$$
(e)
$$\frac{2x - 5}{3} - \frac{x + 4}{6} + \frac{3(5 - x)}{9}$$
$$= \frac{2(2x - 5)}{6} - \frac{x + 4}{6} + \frac{3(5 - x)}{9}$$
$$= \frac{2(2x - 5) - (x + 4)}{6} + \frac{3(5 - x)}{9}$$
$$= \frac{4x - 10 - x - 4}{6} + \frac{3(5 - x)}{9}$$
$$= \frac{4x - 10 - 4}{6} + \frac{3(5 - x)}{9}$$
$$= \frac{3(3x - 14)}{6} + \frac{6(5 - x)}{18}$$
$$= \frac{3(3x - 14) + 6(5 - x)}{18}$$
$$= \frac{9x - 6x - 42 + 30}{18}$$
$$= \frac{3x - 12}{18}$$
$$= \frac{x - 4}{6}$$

OXFORD

 $\langle 17 \rangle$

(f)
$$\frac{4(3x+4)}{10} - \frac{x+7}{15} - \frac{2x-1}{5}$$
$$= \frac{12(3x+4)}{30} - \frac{2(x+7)}{30} - \frac{2x-1}{5}$$
$$= \frac{12(3x+4)-2(x+7)}{30} - \frac{2x-1}{5}$$
$$= \frac{36x+48-2x-14}{30} - \frac{2x-1}{5}$$
$$= \frac{36x-2x+48-14}{30} - \frac{6(2x-1)}{30}$$
$$= \frac{34x+34}{30} - \frac{6(2x-1)}{30}$$
$$= \frac{34x+34-12x+6}{30}$$
$$= \frac{34x+34-12x+6}{30}$$
$$= \frac{34x-12x+34+6}{30}$$
$$= \frac{22x+40}{30}$$
$$= \frac{11x+20}{15}$$
(g) $-1 - \frac{3(x+7)}{7} - \frac{4(2x-1)}{5}$
$$= \frac{-7}{7} - \frac{3(x+7)}{7} - \frac{4(2x-1)}{5}$$
$$= \frac{-7-3x-21}{7} - \frac{4(2x-1)}{5}$$
$$= \frac{-3x-28}{7} - \frac{4(2x-1)}{5}$$
$$= \frac{5(-3x-28)-28(2x-1)}{35}$$
$$= \frac{-15x-140-56x+28}{35}$$
$$= \frac{-15x-56x-140+28}{35}$$
$$= \frac{-71x-112}{35}$$

$$(h) \quad \frac{3x-7}{4} - (x-5) - \frac{x-1}{3} \\ = \frac{3x-7}{4} - \frac{x-1}{3} - (x-5) \\ = \frac{3(3x-7)}{12} - \frac{4(x-1)}{12} - (x-5) \\ = \frac{3(3x-7) - 4(x-1)}{12} - (x-5) \\ = \frac{9x-21-4x+4}{12} - (x-5) \\ = \frac{9x-4x-21+4}{12} - (x-5) \\ = \frac{9x-4x-21+4}{12} - (x-5) \\ = \frac{5x-17}{12} - \frac{12(x-5)}{12} \\ = \frac{5x-17-12x+60}{12} \\ = \frac{5x-12x-17+60}{12} \\ = \frac{-7x+43}{12} \\ (i) \quad \frac{2(3x-1)}{5} - (x-3) - \frac{2x+1}{3} - (x-3) \\ = \frac{6(3x-1)-5(2x+1)}{15} - (x-3) \\ = \frac{18x-6-10x-5}{15} - (x-3) \\ = \frac{18x-10x-6-5}{15} - (x-3) \\ = \frac{8x-11-15(x-3)}{15} \\ = \frac{8x-11-15(x-3)}{15} \\ = \frac{8x-11-15x+45}{15} \\ = \frac{8x-15x-11+45}{15} \\ = \frac{-7x+34}{15} \\ \end{cases}$$

Advanced 8. Let Taj's present age be p years. Then Ahsan's present age is 5p years. In 5 years' time, Taj is (p + 5) years old and Ahsan is (5p + 5) years old. p + 5 + (5p + 5) = xp+5+5p+5 = xp + 5p + 5 + 5 = x6p = x - 5 - 56p = x - 10 $p = \frac{x - 10}{6}$ Taj's present age is $\frac{x-10}{6}$ years old. 9. Total age of the girls = (n + 5)q years Total age of the group of boys and girls = (m + 2 + n + 5)p= (m + n + 7)p years Total age of the boys = p(m + n + 7) - q(n + 5) years Average age of the boys $= \frac{p(m+n+7) - q(n+5)}{(m+2)}$ years old **10. (a)** $\frac{2(x-3y)}{4} - \frac{4y-x}{12} - \frac{4(x-5y)}{3}$ $=\frac{6(x-3y)}{12}-\frac{4y-x}{12}-\frac{4(x-5y)}{3}$ $=\frac{6(x-3y)-(4y-x)}{12}-\frac{4(x-5y)}{3}$ $=\frac{6x-18y-4y+x}{12}-\frac{4(x-5y)}{3}$ $=\frac{7x-22y}{12}-\frac{16(x-5y)}{12}$ $= \frac{7x - 22y - 16(x - 5y)}{12}$ $= \frac{7x - 22y - 16x + 80y}{12}$ $=\frac{7x - 16x - 22y + 80y}{12}$ $=\frac{-9x+58}{12}$

(b)
$$\frac{-4(p-3q)}{5} - \left[\frac{2(q-p)}{20} - \frac{3(p-5q)}{4}\right]$$
$$= \frac{-4(p-3q)}{5} - \left[\frac{2(q-p)}{20} - \frac{15(p-5q)}{20}\right]$$
$$= \frac{-4(p-3q)}{5} - \left[\frac{2(q-2p-15(p-5q))}{20}\right]$$
$$= \frac{-4(p-3q)}{5} - \left[\frac{2(q-2p-15(p-5q))}{20}\right]$$
$$= \frac{-16(p-3q)}{20} - \left[\frac{-17p+77q}{20}\right]$$
$$= \frac{-16(p-3q) - (-17p+77q)}{20}$$
$$= \frac{-16p+48q+17p-77q}{20}$$
$$= \frac{-16p+48q+17p-77q}{20}$$
$$= \frac{-16p+48q+17p-77q}{20}$$
$$= \frac{p-29q}{20}$$
(c)
$$-3 + \frac{2(f-3h)}{21} - \frac{5(h-f)}{7} + \frac{2(-2f-3h)}{3}$$
$$= -3 + \frac{2(f-3h)}{21} - \frac{15(h-f)}{21} + \frac{2(-2f-3h)}{3}$$
$$= -3 + \frac{2(f-3h)-15(h-f)}{21} + \frac{2(-2f-3h)}{3}$$
$$= -3 + \frac{17f-21h}{21} + \frac{2(-2f-3h)}{3}$$
$$= -3 + \frac{17f-21h}{21} + \frac{2(-2f-3h)}{3}$$
$$= -3 + \frac{17f-21h}{21} + \frac{14(-2f-3h)}{21}$$
$$= -3 + \frac{17f-21h-28f-42h}{21}$$
$$= -3 + \frac{17f-21h-28f-42h}{21}$$
$$= -3 + \frac{17f-21h-28f-42h}{21}$$
$$= \frac{-63}{21} + \frac{-11f-63h}{21}$$
(d)
$$\frac{x}{5} - \frac{4}{3x}$$
$$= \frac{3x^{2}}{15x} - \frac{20}{15x}$$

(e)
$$\frac{1}{x} + \frac{1}{2x} + \frac{1}{3x}$$

 $= \frac{6}{6x} + \frac{3}{6x} + \frac{2}{6x}$
 $= \frac{11}{6x}$
(f) $\frac{5}{2x} - \frac{3}{3x} + \frac{7}{x}$
 $= \frac{15}{6x} - \frac{6}{6x} + \frac{42}{6x}$
 $= \frac{15 - 6 + 42}{6x}$
 $= \frac{51}{6x}$
 $= \frac{51}{6x}$
(g) $\frac{2x - 3}{5y} - \frac{5 - 2x}{10y} + \frac{x}{y}$
 $= \frac{2(2x - 3) - (5 - 2x) + 10x}{10y}$
 $= \frac{4x - 6 - 5 + 2x + 10x}{10y}$
 $= \frac{4x + 2x + 10x - 6 - 5}{10y}$

13. $\frac{3x+4}{10} - \frac{x+7}{15} - \frac{2x-1}{5}$ $= \frac{3(3x+4)}{30} - \frac{2(x+7)}{30} - \frac{2x-1}{5}$ $= \frac{9x+12-2x-14}{30} - \frac{2x-1}{5}$ $= \frac{9x-2x+12-14}{30} - \frac{2x-1}{5}$ $= \frac{7x-2}{30} - \frac{6(2x-1)}{30}$ $= \frac{7x-2-6(2x-1)}{30}$ $= \frac{7x-2-12x+6}{30}$ $= \frac{7x-12x-2+6}{30}$ $= \frac{-5x+4}{30}$ 14. x paisa →1 gram PKR y = (100 × y) paisa = 100y paisa 100 y paisa → $\frac{1}{x} × 100y$ $= \frac{100y}{x} grams$

New Trend

11. $\frac{a}{5} - \frac{2(3a-5c)}{6}$ = $\frac{a \times 6}{5 \times 6} - \frac{2(3a-5c) \times 5}{6 \times 5}$ $=\frac{6a}{30}-\frac{10(3a-5c)}{30}$ $=\frac{6a-10(3a-5c)}{30}$ $=\frac{6a-30a+50c}{30}$ $=\frac{-24a+50c}{30}$ $= \frac{2(-12a+25c)}{30}$ $=\frac{25c-12a}{15}$ **12.** (a) BC = 23x - 2 - (3x - 2) - (5x + 1) - (6x - 7)= 23x - 3x - 5x - 6x - 2 + 2 - 1 + 7= (9x + 6) cm(**b**) Since BC = 2AD, 9x + 6 = 2(5x + 1)9x + 6 = 10x + 2x = 4Perimeter of trapezium = 23x - 2= 23(4) - 2= 90 cm

Chapter 7 Expansion and Factorisation of Quadratic Expressions

Basic

1. (a)
$$5a^2 + 2a - 3a^2 - a$$

 $= 2a^2 + a$
(b) $b^2 - 3b + 4 - 2b^2 + 3b - 7$
 $= -b^2 - 3$
(c) $c^2 + 4c + 3 + (-2c^2) + (-c) - 2$
 $= c^2 + 3c + 1$
(d) $4d^2 - d - 5 - (-2d^2) - (-d) + 6$
 $= 4d^2 - d - 5 + 2d^2 + d + 6$
 $= 6d^2 + 1$
(e) $8e^2 + 8e + 9 - (5e^2 + 2e - 3)$
 $= 8e^2 + 8e + 9 - 5e^2 - 2e + 3$
 $= 3e^2 + 6e + 12$
(f) $6f^2 - 4f - 1 - (2f^2 - 7f)$
 $= 6f^2 - 4f - 1 - 2f^2 + 7f$
 $= 4f^2 + 3f - 1$
(g) $-(2 + g - g^2) + (6g - g^2)$
 $= -2 - g + g^2 + 6g - g^2$
 $= 5g - 2$
(h) $-(1 + 5h - 3h^2) - (2h^2 + 4h - 7)$)
 $= -1 - 5h + 3h^2 - 2h^2 - 4h + 7$
 $= h^2 - 9h + 6$
2. (a) $8 \times 2h$
 $= 16h$
(b) $3h \times 4h$
 $= 12h^2$
(c) $(-5h) \times 6h$
 $= -30h^2$
(d) $(-10h) \times (-7h)$
 $= 70h^2$
3. (a) $5(2a + 3)$
 $= 10a + 15$
(b) $-4(5b + 1)$
 $= -20b - 4$
(c) $8(c^2 + 2c - 3)$
 $= 8c^2 + 16c - 24$
(d) $-2(4 - 6d^2)$
 $= -8 + 12d^2$
 $= 12d^2 - 8$
(e) $3e(8e + 7)$
 $= 24e^2 + 21e$
(f) $-f(9 - f)$
 $= -9f + f^2$
 $= f^2 - 9f$

(g) -6g(5g-1) $=-30g^{2}+6g$ $= 6g - 30g^2$ **(h)** -2h(-3h-4) $= 6h^2 + 8h$ 4. (a) 3(a+2) + 4(2a+3)= 3a + 6 + 8a + 12= 11a + 18**(b)** 11(5b-7) + 9(2-3b)= 55b - 77 + 18 - 27b= 28b - 59(c) 8(5c-4) + 3(2-4c)=40c - 32 + 6 - 12c= 28c - 26(d) 2d(3d+4) + d(5d-2) $= 6d^2 + 8d + 5d^2 - 2d$ $= 11d^{2} + 6d$ (e) e(6e-1) + 2e(e-2) $= 6e^2 - e + 2e^2 - 4e$ $= 8e^2 - 5e$ (f) 4f(1-2f) + f(3-f) $=4f-8f^{2}+3f-f^{2}$ $=7f - 9f^{2}$ **5.** (a) (x+5)(x+7) $=x^{2}+7x+5x+35$ $=x^{2}+12x+35$ **(b)** (2x+1)(x+3) $= 2x^2 + 6x + x + 3$ $= 2x^2 + 7x + 3$ (c) (x+6)(3x+4) $= 3x^{2} + 4x + 18x + 24$ $= 3x^{2} + 22x + 24$ (d) (4x+3)(5x+6) $= 20x^{2} + 24x + 15x + 18$ $= 20x^2 + 39x + 18$ 6. (a) $a^2 + 20a + 75$ 15 × а a^2 а 15a 5 5a75 $\therefore a^2 + 20a + 75 = (a + 15)(a + 5)$ **(b)** $b^2 + 19b + 18$ 18 b × b^2 18b b 1 b 18

 $\therefore b^2 + 19b + 18 = (b + 18)(b + 1)$

(c) $c^2 - 11c + 28$

$$\begin{array}{c|c} \times & c & -7 \\ \hline c & c^2 & -7c \\ \hline -4 & -4c & 28 \end{array}$$

:. $c^2 - 11c + 28 = (c - 7)(c - 4)$ (d) $d^2 - 21d + 68$

$$\begin{array}{c|ccc}
\times & d & -17 \\
\hline
d & d^2 & -17d \\
\hline
-4 & -4d & 68 \\
\end{array}$$

:.
$$d^2 - 21d + 68 = (d - 17)(d - 4)$$

(e) $e^2 + 4e - 77$

$$\begin{array}{c|ccc} \times & e & 11 \\ \hline e & e^2 & 11e \\ -7 & -7e & -77 \\ \hline \end{array}$$

$$\therefore e^2 + 4e - 77 = (e + 11)(e - 7)$$

(f) $f^2 + 3f - 154$

:.
$$f^2 + 3f - 154 = (f + 14)(f - 11)$$

(g) $g^2 - 2g - 35$

×	g	-7
g	g^2	-7 <i>g</i>
5	5g	-35

: $g^2 - 2g - 35 = (g - 7)(g + 5)$ (h) $h^2 - 10h - 171$

	×	h	-19	
	h	h^2	-19h	
	9	9h	-171	
:. $h^2 - 10h - 171 = (h - 19)(h + 9)$				

7. (a) $6a^2 + 31a + 5$

$$\begin{array}{c|ccc} \times & 6a & 1 \\ \hline a & 6a^2 & a \\ \hline 5 & 30a & 5 \\ \end{array}$$

:. $6a^2 + 31a + 5 = (6a + 1)(a + 5)$ (b) $8b^2 + 30b + 27$

×	4 <i>b</i>	9
2b	$8b^2$	18 <i>b</i>
3	12b	27

$$\therefore 8b^2 + 30b + 27 = (4b + 9)(2b + 3)$$

(c)
$$4c^2 - 25c + 6$$

$$\begin{array}{c|c} \times & 4c & -1 \\ \hline c & 4c^2 & -c \\ -6 & -24c & 6 \\ \hline \end{array}$$

 $\therefore 4c^2 - 25c + 6 = (4c - 1)(c - 6)$

(d) $9d^2 - 36d + 32$

×	3 <i>d</i>	-8
3 <i>d</i>	$9d^2$	-24 <i>d</i>
-4	-12d	32

: $9d^2 - 36d + 32 = (3d - 8)(3d - 4)$ (e) $15e^2 + 2e - 1$

$$\begin{array}{c|ccc} x & 5e & -1 \\ \hline 3e & 15e^2 & -3e \\ 1 & 5e & -1 \\ \end{array}$$

 $\therefore 15e^2 + 2e - 1 = (5e - 1)(3e + 1)$

(f)
$$2g^2 - 5g - 3$$

$$\begin{array}{c|ccc} \times & 2g & 1 \\ \hline g & 2g^2 & g \\ \hline -3 & -6g & -3 \\ \hline \end{array}$$

$$\therefore 2g^2 - 5g - 3 = (2g + 1)(g - 3)$$

(g)
$$12h^2 - 31h - 15$$

$$\begin{array}{c|ccc} \times & 12h & 5 \\ \hline h & 12h^2 & 5h \\ \hline -3 & -36h & -15 \\ \hline \end{array}$$

 $\therefore 12h^2 - 31h - 15 = (12h + 5)(h - 3)$

8. (a) 7*a* × 3*b* = 21ab**(b)** $5c \times (-4d)$ = -20cd(c) $(-10e) \times (-2f)$ = 20 ef(d) $\frac{1}{6}g \times 24h$ =4gh9. (a) 5a(2a+3b) $= 10a^{2} + 15ab$ **(b)** 8c(5c-2d) $=40c^{2}-16cd$ (c) 9e(-4e + 7f) $= -36e^2 + 63ef$ (d) 4h(-2g-3h) $=-8gh-12h^{2}$ (e) -6j(k-4j) $=-6jk+24j^{2}$ (f) -4m(2n+5m) $=-8mn-20m^{2}$ (g) -7p(-3p+4q) $=21p^{2}-28pq$ (h) -3r(-2r-s) $= 6r^2 + 3rs$ (i) 2u(5u + v - w) $= 10u^2 + 2uv - 2uw$ (j) -6x(3x - 2y + z) $= -18x^{2} + 12xy - 6xz$ **10. (a)** 4a(3a-b) + 2a(a-5b) $= 12a^2 - 4ab + 2a^2 - 10ab$ $= 14a^2 - 14ab$ **(b)** 2c(4d-3c) + 5c(5c-2d) $= 8cd - 6c^{2} + 25c^{2} - 10cd$ $= 19c^2 - 2cd$ (c) 3f(2e-7f) + 2e(6f-5e) $= 6ef - 21f^2 + 12ef - 10e^2$ $= -10e^{2} + 18ef - 21f^{2}$ (d) 5h(-2h-3g) + 2h(-h+3g) $=-10h^2-15gh-2h^2+6gh$ $= -12h^2 - 9gh$ **11.** (a) (x + y)(x + 4y) $= x^{2} + 4xy + xy + 4y^{2}$ $= x^2 + 5xy + 4y^2$ **(b)** (2x + y)(3x + y) $= 6x^{2} + 2xy + 3xy + y^{2}$ $= 6x^2 + 5xy + y^2$ (c) $(x^2 + 1)(x + 1)$ $= x^{3} + x^{2} + x + 1$ (d) $(4x^2 + 3)(2x + 3)$ $= 8x^{3} + 12x^{2} + 6x + 9$

12. (a)
$$abc - a^{2}bc^{3}$$

 $= abc(1 - ac^{2})$
 (b) $2a^{2}b^{3}c - 8ab^{2}c^{3}$
 $= 2ab^{2}c(ab - 4c^{2})$
 (c) $6k^{2} + 8k^{3} - 10k^{5}$
 $= 2k^{2}(3 + 4k - 5k^{3})$
 (d) $m^{2}n - mn^{2} + m^{2}n^{2}$
 $= mn(m - n + mn)$
 (e) $p^{2}q - 2pq^{2} + 4p^{2}q^{2}$
 $= pq(p - 2q + 4pq)$
 (f) $2s - 4s^{2} + 8st^{2}$
 $= 2s(1 - 2s + 4t^{2})$
 (g) $12x^{3} - 9x^{2}y^{2} + 6xy^{3}$
 $= 3x(4x^{2} - 3xy^{2} + 2y^{3})$
 (h) $5y^{2}z - 3y^{3}z^{2} + 6y^{2}z^{2}$
 $= y^{2}z(5 - 3yz + 6z)$
13. (a) $4a(x + y) + 7(x + y)$
 $= (4a + 7)(x + y)$
 (b) $5b(6x + y) - c(y + 6x)$
 $= (5b - c)(6x + y)$
 (c) $8d(x - 3y) = e(3y - x)$
 $= 8d(x - 3y) + e(x - 3y)$
 $= (8d + e)(x - 3y)$
 (d) $(x + 5)(x - 1) + a(x + 5)$
 $= (x - 1 + a)(x + 5)$

Intermediate

14. (a)
$$6(a + 3) - 5(a - 4)$$

 $= 6a + 18 - 5a + 20$
 $= a + 38$
(b) $13(5b + 7) - 6(3b - 5)$
 $= 65b + 91 - 18b + 30$
 $= 47b + 121$
(c) $9(3c - 2) - 5(2 + c)$
 $= 27c - 18 - 10 - 5c$
 $= 22c - 28$
(d) $8(5 - 4d) - 7(7 - 5d)$
 $= 40 - 32d - 49 + 35d$
 $= 3d - 9$
(e) $7(12 - 5e) - 3(9 - 7e)$
 $= 84 - 35e - 27 + 21e$
 $= 57 - 14e$
(f) $5f(f + 3) - 4f(5 - f)$
 $= 5f^2 + 15f - 20f + 4f^2$
 $= 9f^2 - 5f$
(g) $-2g(4 - g) - 3g(2g + 1)$
 $= -8g + 2g^2 - 6g^2 - 3g$
 $= -4g^2 - 11g$

_23__

(h)
$$-5h(3h+7) - 4h(-h-2)$$

 $= -15h^{2} - 35h + 4h^{2} + 8h$
 $= -11h^{2} - 27h$
15. (a) $(y + 7)(y - 11)$
 $= y^{2} - 11y + 7y - 77$
 $= y^{2} - 4y - 77$
(b) $(y - 6)(y + 8)$
 $= y^{2} + 8y - 6y - 48$
 $= y^{2} + 2y - 48$
(c) $(y - 9)(y - 4)$
 $= y^{2} - 4y - 9y + 36$
 $= y^{2} - 13y + 36$
(d) $(2y + 3)(4y - 5)$
 $= 8y^{2} - 10y + 12y - 15$
 $= 8y^{2} + 2y - 15$
(e) $(5y - 9)(6y - 1)$
 $= 30y^{2} - 5y - 54y + 9$
 $= 30y^{2} - 59y + 9$
(f) $(4y - 1)(3 - 4y)$
 $= 12y - 16y^{2} - 3 + 4y$
 $= -16y^{2} + 16y - 3$
(g) $(7 - 2y)(4 + y)$
 $= 28 + 7y - 8y - 2y^{2}$
 $= 28 - y - 2y^{2}$
(h) $(7 - 3y)(8 - 5y)$
 $= 56 - 35y - 24y + 15y^{2}$
 $= 56 - 59y + 15y^{2}$
16. (a) $4 + (a + 2)(a + 5)$
 $= 4 + a^{2} + 5a + 2a + 10$
 $= a^{2} + 7a + 14$
(b) $6b + (3b + 1)(b - 2)$
 $= 6b + 3b^{2} - 6b + b - 2$
 $= 3b^{2} + b - 2$
(c) $(7c + 2)(3c - 8) + 9c(c + 1)$
 $= 21c^{2} - 56c + 6c - 16 + 9c^{2} + 9c$
 $= 30c^{2} - 41c - 16$
(d) $(4d - 5)(8d - 7) + (2d + 3)(d - 3)$
 $= 32d^{2} - 28d - 40d + 35 + 2d^{2} - 6d + 3d - 9$
 $= 34d^{2} - 71d + 26$
17. (a) $-x^{2} - 4x + 21$
 $\frac{x}{x} + \frac{-x}{3} + \frac{3}{x} + \frac{-x^{2}}{3x} + \frac{3}{7} + \frac{-x^{2}}{-7x} + 21$

(b)
$$-6x^2 + 2x + 20 = -2(3x^2 - x - 10)$$

$$\frac{x}{3x} \frac{3x^2}{5x} \frac{5x}{-2} \frac{5x}{-6x} - 10$$

$$\therefore -6x^2 + 2x + 20 = -2(3x + 5)(x - 2)$$
(c) $12hx^2 - 25hx + 12h = h(12x^2 - 25x + 12)$

$$\frac{x}{4x} \frac{4x}{-3} \frac{4x}{-4} \frac{-3}{12} \frac{12x^2 - 9x}{-4} \frac{-16x}{12} \frac{12}{12}$$

$$\therefore 12hx^2 - 25hx + 12h = h(4x - 3)(3x - 4)$$
18. $3x^2 + 26x + 51$

$$\frac{x}{3x} \frac{3x^2}{17x} \frac{17x}{3} \frac{3x^2}{9x} \frac{17x}{51}$$

$$\therefore 3x^2 + 26x + 51 = (3x + 17)(x + 3)$$
 $32 \ 651 = 3(100)^2 + 26(100) + 51$
Let $x = 100$.
 $32 \ 651 = 317 \times 103$
 \therefore The factors are $317 \ and 103$.
19. $4x^2 + 13x + 3$

$$\frac{x}{4x} \frac{4x}{12x} \frac{1}{33}$$

$$\therefore 4x^2 + 13x + 3 = (4x + 1)(x + 3)$$
 $41 \ 303 = 4(100)^2 + 13(100) + 3$
Let $x = 100$.
 $41 \ 303 = 401 \times 103$
 \therefore The prime factors are $401 \ and 103$.
20. (a) $\frac{1}{2}a \times \frac{2}{3}b$
 $= \frac{1}{3}ab$
(b) $\frac{2}{5}c \times (-\frac{3}{8}d)$
 $= -\frac{3}{20} \ cd$
(c) $(-\frac{1}{4}e) \times \frac{12}{13}f$
 $= -\frac{3}{13}ef$
(d) $(-\frac{6}{7}g) \times (-\frac{7}{12}h)$
 $= \frac{1}{2}gh$

(e)
$$0.2p \times 12q$$

 $= 2.4pq$
(f) $3r \times 0.9s$
 $= 2.7rs$
(g) $4w^2x \times 5wx^3$
 $= 20w^3x^4$
(h) $(-8xy^2z) \times (-2xz^3)$
 $= 16x^2y^2z^4$
21. $\frac{4}{5}a^2bc^3 \times \frac{15}{16}ab^2$
 $= \frac{3}{4}a^3b^3c^3$
22. (a) $5ab(a-4b)$
 $= 5a^2b - 20ab^2$
(b) $-3c(2c^2d + d^2)$
 $= -6c^3d - 3cd^2$
(c) $-8ef(6f - e^2)$
 $= -48ef^2 + 8e^3f$
(d) $-10h^2(-7g^2h - 9h^3)$
 $= 70g^2h^3 + 90h^5$
23. (a) $4a(3b + 5c) - 3b(8c - 9a)$
 $= 12ab + 20ac - 24bc + 27ab$
 $= 39ab + 20ac - 24bc + 27ab$
 $= 39ab + 20ac - 24bc + 27ab$
 $= 10d^2 + 25de - 6e^2 + 21de$
 $= 10d^2 + 46de - 6e^2$
(c) $7f(2f + 3g) - 3f(-4g + 3f)$
 $= 14f^2 + 21fg + 12fg - 9f^2$
 $= 5f^2 + 33fg$
(d) $4h(-3h + k) - 2h(-5k + h)$
 $= -12h^2 + 4hk + 10hk - 2h^2$
 $= -14h^2 + 14hk$
24. (a) $(a + 6b)(a - 2b)$
 $= a^2 - 2ab + 6ab - 12b^2$
 $= a^2 + 4ab - 12b^2$
(b) $(4c + 5d)(5c + 7d)$
 $= 20c^2 + 28cd + 25cd + 35d^2$
 $= 20c^2 + 53cd + 35d^2$
(c) $(4e - 3f)(2e + 7f)$
 $= 8e^2 + 28ef - 6ef - 21f^2$
 $= 8e^2 + 22ef - 21f^2$
(d) $(2g - 3h)(g - 2h)$
 $= 2g^2 - 4gh - 3gh + 6h^2$
 $= 2g^2 - 7gh + 6h^2$
(e) $(m^2 - 4)(2m + 3)$
 $= 2m^3 + 3m^2 - 8m - 12$
(f) $(2n - 4)(n^2 + 3)$
 $= 2n^3 - 4n^2 + 6n - 12$

(g)
$$(2p - 3q)(2p - 5r)$$

 $= 4p^{2} - 10pr - 6pq + 15qr$
(h) $(xy - 5)(xy + 8)$
 $= x^{2}y^{2} + 8xy - 5xy - 40$
 $= x^{2}y^{2} + 3xy - 40$
25. (a) $(a + 1)(a - 3) + (2a - 3)(5 - 7a)$
 $= a^{2} - 3a + a - 3 + 10a - 14a^{2} - 15 + 21a$
 $= -13a^{2} + 29a - 18$
(b) $(7b + 1)(b - 5) - 3(4 - 2b - b^{2})$
 $= 7b^{2} - 35b + b - 5 - 12 + 6b + 3b^{2}$
 $= 10b^{2} - 28b - 17$
(c) $(3c - 8)(c + 1) - (2c - 1)(5 - c)$
 $= 3c^{2} + 3c - 8c - 8 - (10c - 2c^{2} - 5 + c)$
 $= 3c^{2} - 5c - 8 + (-2c^{2} + 11c - 5)$
 $= 3c^{2} - 5c - 8 + 2c^{2} - 11c + 5$
 $= 5c^{2} - 16c - 3$
(d) $(d + 3e)(d - 3e) - 2(d + 2e)(d - e)$
 $= d^{2} - 9e^{2} - 2(d^{2} - de + 2de - 2e^{2})$
 $= d^{2} - 9e^{2} - 2d^{2} - 2de + 4e^{2}$
 $= -d^{2} - 2de - 5e^{2}$
26. (a) $a^{2} + 7ab + 6b^{2}$
 x
 $a b$

	u	υ	
а	a^2	ab	
6 <i>b</i>	6ab	$6b^2$	
		2	-

:.
$$a^2 + 7ab + 6b^2 = (a + b)(a + 6b)$$

(b) $c^2 + 11cd - 12d^2$

×	с	12 <i>d</i>	
с	c^2	12 <i>cd</i>	
- <i>d</i>	–cd	$-12d^{2}$	

:.
$$c^2 + 11cd - 12d^2 = (c + 12d)(c - d)$$

(c) $2d^2 - de - 15e^2$

×	2d	5e
d	$2d^2$	5de
-3e	-6de	$-15e^{2}$

:.
$$2d^2 - de - 15e^2 = (2d + 5e)(d - 3e)$$

(d) $6f^2 - 29fg + 28g^2$

×	3f	-4g	
2f	$6f^2$	-8fg	
-7g	-21fg	$28g^2$	
$\therefore 6f^2 -$	29fg + 2	$28g^2 = (1)$	(3f-4g)(2f-7g)

(e)
$$2m^2 + 2mn - 12n^2 = 2(m^2 + mn - 6n^2)$$

 $\times \qquad m \qquad -2n$
 $m \qquad m^2 \qquad -2mn$
 $3n \qquad 3mn \qquad -6n^2$
 $\therefore 2m^2 + 2mn - 12n^2 = 2(m - 2n)(m + 3n)$

(f) $px^2 - 11pxy + 24py^2 = p(x^2 - 11xy + 24y^2)$

×	х	-3y
x	x^2	-3xy
-8y	-8xy	$24y^2$

 $\therefore px^{2} - 11pxy + 24py^{2} = p(x - 3y)(x - 8y)$ **27.** $12x^{2} + xy - 20y^{2}$ $\times \begin{vmatrix} 4x & -5y \end{vmatrix}$

3 <i>x</i>	$12x^{2}$	-15 <i>xy</i>	
4y	16xy	$-20y^{2}$	

12x² + xy - 20y² = (4x - 5y)(3x + 4y)
∴ Breadth of rectangle =
$$\frac{(4x - 5y)(3x + 4y)}{4x - 5y}$$

= (3x + 4y) cm
28. (a) (2a + b)(x + y) + (a + b)(x + y)

28. (a)
$$(2d + b)(x + y) + (d + b)(x + y) = (2a + b + a + b)(x + y) = (3a + 2b)(x + y)$$

(b) $(4c + 3d)^2 + (4c + 3d)(c + d) = (4c + 3d)(4c + 3d + c + d) = (4c + 3d)(5c + 4d)$
(c) $2p(5r - 7s) + 3q(7s - 5r) = 2p(5r - 7s) - 3q(5r - 7s) = (2p - 3q)(5r - 7s)$
(d) $9w(y - x) - 8z(x - y) = 9w(y - x) + 8z(y - x) = (9w + 8z)(y - x)$
29. (a) $p^2 + pq + 3qr + 3pr$

$$= p(p+q) + 3r(q+p) = (p+3r)(p+q)$$

(b)
$$3xy + 6y - 5x - 10$$

= $3y(x + 2) - 5(x + 2)$
= $(3y - 5)(x + 2)$

(c)
$$x^2z - 4y - x^2y + 4z$$

= $x^2z - x^2y + 4z - 4y$
= $x^2(z - y) + 4(z - y)$
= $(x^2 + 4)(z - y)$

$$= (x + 4)(z - y)$$

(d) $x^{3} + xy - 3x^{2}y - 3y^{2}$
 $= x(x^{2} + y) - 3y(x^{2} + y)$
 $= (x^{2} + y)(x - 3y)$

(e)
$$x - 4x^2 - 4 + x^3$$

 $= x^3 + x - 4x^2 - 4$
 $= x(x^2 + 1) - 4(x^2 + 1)$
 $= (x^2 + 1)(x - 4)$
(f) $h^2 - 1 + hk + k$
 $= (h + 1)(h - 1) + k(h + 1)$
 $= (h - 1 + k)(h + 1)$
(g) $m - n - m^2 + n^2$
 $= (m - n) - (m^2 - n^2)$
 $= (m - n) - (m + n)(m - n)$
 $= (1 - m - n)(m - n)$
(h) $a^2 - 3bc - ab + 3ac$
 $= a^2 - ab + 3ac - 3bc$
 $= a(a - b) + 3c(a - b)$
 $= (a + 3c)(a - b)$
(i) $x^2y - 3y - 6 + 2x^2$
 $= y(x^2 - 3) - 2(3 - x^2)$
 $= y(x^2 - 3) + 2(x^2 - 3)$
 $= (y + 2)(x^2 - 3)$
(j) $a^2x - 12by - 3bx + 4a^2y$
 $= a^2(x + 4y) - 3b(x + 4y)$
 $= (x + 4y)(a^2 - 3b)$

Advanced

30. (a)
$$9a^2 - (4a - 1)(a + 2)$$

 $= 9a^2 - (4a^2 + 8a - a - 2)$
 $= 9a^2 - (4a^2 + 7a - 2)$
 $= 9a^2 - 4a^2 - 7a + 2$
 $= 5a^2 - 7a + 2$
(b) $3b(2 - b) - (1 + b)(1 - b)$
 $= 6b - 3b^2 - (1 - b + b - b^2)$
 $= 6b - 3b^2 - (1 - b^2)$
 $= 6b - 3b^2 - 1 + b^2$
 $= -2b^2 + 6b - 1$
(c) $(5c + 6)(6c - 5) - (3 - 2c)(1 - 15c)$
 $= 30c^2 - 25c + 36c - 30 - (3 - 45c - 2c + 30c^2)$
 $= 30c^2 + 11c - 30 - (3 - 47c + 30c^2)$
 $= 30c^2 + 11c - 30 - (3 - 47c + 30c^2)$
 $= 30c^2 + 11c - 30 - 3 + 47c - 30c^2$
 $= 58c - 33$
(d) $(2d - 8)(\frac{1}{2}d - 4) - (3d - 6)(\frac{1}{3}d + 1)$
 $= d^2 - 8d - 4d + 32 - (d^2 + 3d - 2d - 6)$
 $= d^2 - 12d + 32 - (d^2 + d - 6)$
 $= d^2 - 12d + 32 - d^2 - d + 6$

$$= 38 - 13d$$

31. (i) $3x^2 + 48x + 189 = 3(x^2 + 16x + 63)$ 7 × х x^2 7xх 9 9*x* 63 $\therefore 3x^2 + 48x + 189 = 3(x + 7)(x + 9)$ (ii) $969 = 3(10)^2 + 48(10) + 189$ Let x = 10. $969 = 3 \times 17 \times 19$ \therefore Sum = 3 + 17 + 19 = 39**32.** $2x^2 - 2.9x - 3.6 = 0.1(20x^2 - 29x - 36)$ 5*x* 4 × $20x^{2}$ 4x16*x* -45x-9 -36 $\therefore 2x^2 - 2.9x - 3.6 = 0.1(5x + 4)(4x - 9)$ i.e. p = 5, q = 4, r = 4, s = -9 $\therefore p + q + r + s = 5 + 4 + 4 - 9$ = 4**33.** (a) $(2h+3)(h-7) - (h+4)(h^2-1)$ $= 2h^{2} - 14h + 3h - 21 - (h^{3} - h + 4h^{2} - 4)$ $=2h^{2}-11h-21-h^{3}+h-4h^{2}+4$ $=-h^3-2h^2-10h-17$ **(b)** $(3p^2 + q)(2p - q) - (2p + q)(3p^2 - q)$ $= 6p^{3} - 3p^{2}q + 2pq - q^{2} - (6p^{3} - 2pq + 3p^{2}q - q^{2})$ $= 6p^{3} - 3p^{2}q + 2pq - q^{2} - 6p^{3} + 2pq - 3p^{2}q + q^{2}$ $=4pq-6p^2q$ **34.** (a) $(2a + 1)(a^2 - 3a - 4)$ $= 2a^3 - 6a^2 - 8a + a^2 - 3a - 4$ $=2a^{3}-5a^{2}-11a-4$ **(b)** $(b+2)(3b^2-5b+6)$ $=3b^{3}-5b^{2}+6b+6b^{2}-10b+12$ $=3b^{3}+b^{2}-4b+12$ (c) $(7-c)(5c^2-2c+1)$ $= 35c^2 - 14c + 7 - 5c^3 + 2c^2 - c$ $=-5c^{3}+37c^{2}-15c+7$ (d) $(d^2 - 4)(d^2 - 2d + 1)$ $= d^4 - 2d^3 + d^2 - 4d^2 + 8d - 4$ $= d^4 - 2d^3 - 3d^2 + 8d - 4$

(e)
$$(h-2k)(2h+3k-1)$$

= $2h^2 + 3hk - h - 4hk - 6k^2 + 2k$
= $2h^2 - hk - 6k^2 - h + 2k$

(f)
$$(m-n)(m^2+mn+n^2)$$

= $m^3 + m^2n + mn^2 - m^2n - mn^2 - n^3$
= $m^3 - n^3$

(g)
$$(p+1)(p^3 - p^2 + p - 1)$$

 $= p^4 - p^3 + p^2 - p + p^3 - p^2 + p - 1$
 $= p^4 - 1$
(h) $(q-1)(q^3 - 3q^2 + 3q - 1)$
 $= q^4 - 3q^3 + 3q^2 - q - q^3 + 3q^2 - 3q + 1$
 $= q^4 - 4q^3 + 6q^2 - 4q + 1$

New Trend

35. (a)
$$16a^2 - 9b^2$$

×	4 <i>a</i>	3 <i>b</i>	
14 <i>a</i>	$16a^{2}$	12 <i>ab</i>	
-3 <i>b</i>	-12ab	$-9b^{2}$	

:.
$$16a^2 - 9b^2 = (4a + 3b)(4a - 3b)$$

b) $3f^2 + 11f - 20$

$$\begin{array}{c|ccc} \times & 3f & -4 \\ \hline f & 3f^2 & -4f \\ 5 & 15f & -20 \\ \end{array}$$

$$\therefore 3f^2 + 11f - 20 = (3f - 4)(f + 5)$$

(c) $9x^2 - 15x - 6 = 3(3x^2 - 5x - 2)$

$$\begin{array}{c|cccc} x & 3x & 1 \\ \hline x & 3x^2 & x \\ -2 & -6x & -2 \end{array}$$

$$\therefore 9x^2 - 15x - 6 = 3(3x + 1)(x - 2)$$

- **36.** (a) 2ax 4ay + 3bx 6by= 2a(x - 2y) + 3b(x - 2y)
 - = (2a + 3b)(x 2y)
 - (b) 5ax 10ay 3bx + 6by= 5a(x - 2y) - 3b(x - 2y)= (5a - 3b)(x - 2y)
 - (c) 8ab 6bc + 15cd 20ad= 2b(4a - 3c) + 5d(3c - 4a)
 - = 2b(4a 3c) 5d(4a 3c)
 - =(2b-5d)(4a-3c)

Chapter 8 Linear Equation and Coordinate Geometry

Basic

1. We can find the coordinates from the graph. Each ordered pair determines the points A to R.

<i>A</i> (1, 2)	<i>B</i> (7, 1)	C(-2, -3)
D(-4, 5)	<i>E</i> (6, 6)	F(3, -2)
G(-6, -2)	H(5, 0)	I(0, -5)
J(-7, 4)	L(-3, 0)	<i>M</i> (0, 3)
N(-5, 2)	O(0, 0)	P(6, -4)

Q(-3, -6) R(4, -6)

(ii) When y = -26, -26 = 10 - 9x9x = 10 + 26 = 36

$$x = 4$$

(31)

15. For the line $y = -\frac{1}{2}x - 2$, (a) When x = 2, y = -1, then LHS = -1RHS = $-\frac{1}{2} \times 2 - 2 = -3$ Since LHS \neq RHS, then A(2, -1) does not lie on the line. (**b**) When x = -4, y = 0, then LHS = 0RHS = $-\frac{1}{2} \times (-4) - 2 = 0$ Since LHS = RHS, then B(-4, 0) lies on the line. (c) When $x = \frac{2}{3}$ and $y = -\frac{7}{3}$, then LHS = $-\frac{7}{2}$ RHS = $-\frac{1}{2} \times \frac{2}{3} - 2 = -\frac{7}{3}$ Since LHS = RHS, then $C\left(\frac{2}{3}, -\frac{7}{3}\right)$ lies on the line. (d) When $x = -\frac{1}{2}$, $y = -\frac{7}{4}$, then LHS = $-\frac{7}{4}$ RHS = $-\frac{1}{2} \times \left(-\frac{1}{2}\right) - 2 = -\frac{7}{4}$ Since LHS = RHS, then $D\left(-\frac{1}{2}, -\frac{7}{4}\right)$ lies on the line. (e) When x = 10, y = -3, then LHS = -3RHS = $-\frac{1}{2} \times 10 - 2 = -7$ Since LHS \neq RHS, then E(10, -3) does not lie on the line. **16.** (a) When x = -3, $y = \frac{3 \times (-3) + 7}{2} = \frac{-2}{2} = -1$ When x = $y = \frac{3 \times 0 + 7}{2} = \frac{7}{2}$ When x = 3 $y = \frac{3 \times 3 + 7}{2} = \frac{16}{2} = 8$ x -3 0 3 8 -1 y 2

When x = 0, $2y + 3 \times 0 = 4$ 2y = 4y = 2

(d) When x = -3, $5y - 2 \times (-3) = 8$ 5y + 6 = 85y = 8 - 65y = 2 $y = \frac{2}{5}$ When x = 0, $5y - 2 \times 0 = 8$ 5*y* = 8 $y = \frac{8}{5}$ When x = 3, $5y - 2 \times 3 = 8$ 5y - 6 = 85y = 8 + 65y = 14 $y = \frac{14}{5}$ -3 0 x $\frac{2}{5}$ 8 y

3

 $\frac{14}{5}$

=()			
x	-3	0	1
y = 2x + 5	$y = 2 \times (-3) + 5$	$y = 2 \times 0 + 5$	$y = 2 \times 1 + 5$ - 7

(c) From the graph, the value of x is about $-5\frac{3}{4}$.

(Note: It is necessary to extrapolate the graph so that we can find the value of x when y is less than -6.)
18. (a)

x	-4	0	4
y = 3x - 2	$y = 3 \times (-4) - 2$	$y = 3 \times 0 - 2$	$y = 3 \times 4 - 2 = 10$
	= -14	= -2	
y = 5x - 2	$y = 5 \times (-4) - 2$	$y = 5 \times 0 - 2$	$y = 5 \times 4 - 2 = 18$
	= -22	= -2	
$y = -\frac{1}{2}x - 2$	$y = -\frac{1}{2} \times (-4) - 2$	$y = -\frac{1}{2} \times 0 - 2$	$y = -\frac{1}{2} \times 4 - 2$
	= 0	= -2	= -4
<i>y</i> = -2	<i>y</i> = -2	<i>y</i> = -2	<i>y</i> = -2

(b) All the lines pass through the point (0, -2).

- (b) The shape of the figure formed by the lines is a trapezium.
- (c) In order to find the area bounded by the lines, locate the coordinates of the points of intersection of the lines.

From the graph, the coordinates of points of intersections of the lines are

(1, -2.5), (1, -4), (-5, 0.5) and (-5, -22) Area bounded by the lines

$$=\frac{1}{2} \times (1.5 + 22.5) \times 6$$

= 72 square units

35 🔾

- **20. (a) (i)** Amount of money the house owner has to pay = $35 + 1 \times 15 = PKR 50$
 - (ii) Amount of money the house owner has to pay = $35 + 2 \times 15 = PKR 65$
 - (iii) Amount of money the house owner has to pay = $35 + 3 \times 15 = PKR 80$
 - (iv) Amount of money the house owner has to pay = $35 + 4 \times 15 = PKR 95$

- (d) (i) From the graph, the amount of money charged if he spends 2.5 hours on the job= PKR 72.50
 - (ii) From the graph, the number of hours that the electrician spends on the job
 ≈ 3.65 hours
- 21. (a) From the graph, the values of C can be obtained.

Ν	50	100	150	200	
С	150	200	250	300	

- (b) (i) From the graph, the value of *m* is 100.
 - (ii) He has to pay PKR *m* for the operation cost of printing the newsletters.
- (c) From the graph, the amount of money Taj has to pay is PKR 175.
- (d) From the graph, the maximum number of newsletters he print is 155.

36

7,6

Chapter 9 Time and Speed

Basic

1.
$$5.55 \text{ p.m.} + 40 \text{ min} = 6.35 \text{ p.m.}$$

= 18 35

2.
$$22\ 17\ 23\ 00\ 07\ 00\ 07\ 17\ 43\ \min\ 8\ h\ 17\ \min\ 17\ \min\ 17\ min$$

Total time taken = $43 \min + 8 h + 17 \min$ = 9 h

3. (a) 84 km/h =
$$\frac{84 \text{ km}}{1 \text{ h}}$$

= $\frac{84\ 000 \text{ m}}{3600 \text{ s}}$
= $23\ \frac{1}{3}\text{ m/s}$
(b) 15 m/s = $\frac{15 \text{ m}}{1 \text{ s}}$
= $\frac{(15 \div 1000) \text{ km}}{(1 \div 3600) \text{ s}}$
= 54 km/h
(c) $\frac{2}{3}$ km/min = $\frac{\frac{2}{3}}{\frac{2}{3}}$ km
= $\frac{\frac{2}{3}}{(1 \div 60) \text{ h}}$
= 40 km/h
(d) 120 cm/s = $\frac{120 \div 100}{1 \text{ s}}$
= 1.2 m/s

Convert 44 minutes to hours. 4.4 1 1

$$44 \min = \frac{44}{60} = \frac{11}{15} h$$

11 Time taken to travel a distance of 1 km = ÷11 15

$$\frac{1}{15}$$
 h

Ξ

(a) (i) Time taken to travel a distance of 45 km

$$= \frac{1}{15} \times 45$$
$$= 3 \text{ h}$$

(ii) Time taken to travel a distance of 36 km

$$= \frac{1}{15} \times 36$$

= $2\frac{2}{5}$ h or 2 h 24 min

e of 20 km

(iii) Time taken to travel a distance of 20

$$= \frac{1}{15} \times 20$$

$$= 1\frac{1}{3} \text{ h or 1 h 20 min}$$
(b) Speed of the cyclist

$$= \frac{11 \times 1000}{44 \times 60}$$

$$= 4\frac{1}{6} \text{ m/s}$$
5. (i) Time taken for the journey

$$= 50 \text{ min + 3 h 24 min + 2 h 6 min}$$

$$+ 1 \text{ h 30 min}$$

$$= \frac{5}{6} \text{ h + 3}\frac{2}{5} \text{ h + 2}\frac{1}{10} \text{ h + 1}\frac{1}{2} \text{ h}$$

$$= 7\frac{5}{6} \text{ h or 7 h 50 min}$$
(ii) Average speed = $\frac{\text{Total distance travelled}}{\text{Total time taken}}$

$$= \frac{687}{7\frac{5}{6}}$$

$$= 87.7 \text{ km/h (to 3 s.f.)}$$
6. (i) Convert 36 minutes to hours.

6. (i

$$36 \min = \frac{36}{60} = \frac{3}{5} h$$

Total distance travelled Average speed = Total time taken 27

$$=\frac{3}{5}$$

= 45 km/h

Waiting time = 0953 - 0913 = 40 min

- 7. (i) Time taken by the car for the whole journey = 1510 - 0845
 - = 6 h 25 min

$$= 6 \frac{5}{12}$$
 h

(ii) Distance = speed × time

$$= 84 \times 6 \frac{5}{12}$$
$$= 539 \text{ km}$$

8. (i) Convert 54 minutes to hours.

$$54 \min = \frac{54}{60} = \frac{9}{10} h$$

Distance travelled for the first part of the journey

$$= 70 \times \frac{9}{10}$$

= 63 km

Distance travelled for the return journey

= 63 km

Time taken for the return journey

$$= \frac{63}{45}$$

= 1 $\frac{2}{5}$ h or 1 h 24 min

(ii) Time at which Hussain starts to return to the original point

 $= 0955 + 54 \min + 40 \min$

Time when Hussain arrives at the starting point

- = 1129 + 1 h 24 min
- = 1253

Intermediate

- 9. (i) Time for which the car is parked
 - = 1630 0745= 8 h 45 min or $8\frac{3}{4}$ h
 - (ii) Parking fee
 = PKR 2.50 + 14 × PKR 0.80 + PKR 0.80 + PKR 0.80
 = PKR 15.30
- **10.** Distance travelled by the wheel = 765×2.8

= 2142 m

Number of revolutions made by the wheel to travel a distance of 2142 m

$$=\frac{2142}{1.7}$$

11. Convert 46 minutes to hours.

$$46 \min = \frac{46}{60} = \frac{23}{30} h$$

Let the time taken to travel from Town Y to Z be T hours.

Average speed =
$$\frac{\text{Total distance travelled}}{\text{Total time taken}}$$
$$80 = \frac{80 + 48}{T + \frac{23}{30}}$$
$$80\left(T + \frac{23}{30}\right) = 128$$
$$80T + 61\frac{1}{3} = 128$$
$$80T = 128 - 61\frac{1}{3}$$
$$= 66\frac{2}{3}$$
$$T = \frac{5}{6} \text{ h}$$

Speed of the driver when he is driving from Town Y to Z 80

 $= \frac{5}{6}$ = 96 km/h 12. (i) Time arrived at B = 1035 + 0019 = 1054 Time arrived at C = 1150 + (0019 - 0011) = 1158 (ii) Time to travel from Town C to D = 1320 - 1158 = 1 h 22 min

Average speed = $\frac{\text{Total distance travelled}}{\text{Total time taken}}$ = $\frac{123}{1\frac{22}{60}}$ = 90 km/h

Advanced

13.
$$\frac{a-2b}{10} = \frac{b}{6}$$
$$6(a-2b) = 10b$$
$$6a - 12b = 10b$$
$$6a = 10b + 12b$$
$$6a = 22b$$
$$\frac{6a}{b} = 22$$
$$\frac{a}{b} = \frac{22}{6} = \frac{11}{3}$$

The ratio of a: b = 11: 3.

14. Let the distance travelled by the motorist be *y* km.

$$y = x \times 2 \frac{1}{2}$$

= $2 \frac{1}{2} x$ - (1)
$$y = (x + 4) \times \left(2 \frac{1}{2} - \frac{15}{60}\right)$$

= $2 \frac{1}{4} (x + 4)$ - (2)

Substitute (1) into (2):

$$2\frac{1}{2}x = 2\frac{1}{4}(x+4)$$
$$2\frac{1}{2}x = 2\frac{1}{4}x+9$$
$$2\frac{1}{2}x - 2\frac{1}{4}x = 9$$
$$\frac{1}{4}x = 9$$
$$x = 36$$

The value of x is 36.

15. Time taken for the van to travel a distance of 130 km

 $=\frac{130}{65}$

Time taken for the car to travel a distance of 130 km

$$= 2 - \frac{35}{60}$$

 $= 1 \frac{5}{12}$ h

Average speed = $\frac{\text{Total distance travelled}}{\text{Total time taken}}$ = $\frac{130}{\text{Total time taken}}$

$$1\frac{5}{12}$$

= 91 $\frac{13}{17}$ km/h

New Trend

16. (a) 280 km/h =
$$\frac{280 \text{ km}}{1 \text{ h}}$$

= $\frac{280\ 000 \text{ m}}{3600 \text{ s}}$
= $77\frac{7}{9} \text{ m/s}$

(b) Time take for bullet train to pass through tunnel completely

$$= \frac{(20\ 500\ +\ 250\)m}{77\ \frac{7}{9}\ m/s}$$

= $266\ \frac{11}{14}\ s$
= $4\ min\ 27\ s$ (to the nearest second)

17. Time taken to fly from Place A to Place B 9257

$$=\frac{9237}{752}$$

- = 12 h 0.1325 × 60 min
- = 12 h 19 min (to the nearest minute)
- 18. (i) Distance travelled on 1 litre of petrol

$$= \frac{128}{12}$$
$$= 10\frac{2}{3} \text{ km}$$

Distance travelled on 30 litres of petrol

$$= 10 \frac{2}{3} \times 30$$

= 320 km

(ii) Amount of petrol required to travel a distance of 1 km

$$=\frac{12}{128}$$
 litres

Amount of petrol required to travel a distance of 15 000 km

$$=\frac{12}{128} \times 15\ 000$$

= 1406.25 litres

Amount the car owner has to pay

- = 1406.25 × PKR 2.03
- = PKR 2854.69 (to the nearest paisa)

19. (a) 180 km \rightarrow 50.4 litres

$$100 \text{ km} \rightarrow \frac{50.4}{180} \times 100$$
$$= 28 \text{ litres}$$

The fuel consumption of the bus is 28 l/100 km.

(b) (i) 7.6 litres
$$\rightarrow$$
 100 km
50 litres $\rightarrow \frac{100}{7.6} \times 50$
= 658 km (to 3 s.f.)
(ii) 100 km \rightarrow 7.6 litres
330 km $\rightarrow \frac{7.6}{100} \times 330$
= 25.08 litres
1 litre \rightarrow PKR 2.07
25.08 litres \rightarrow PKR 2.07 \times 25.08
= PKR 51.92 (to the nearest paisa)
The petrol will cost Ali PKP 51.92 for a

The petrol will cost Ali PKR 51.92 for a journey of 330 km.

Chapter 10 Triangles, Quadrilaterals and Polygons

Basic

```
1. (a) 2x^{\circ} + 46^{\circ} + 82^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)
                                         2x^{\circ} = 180^{\circ} - 46^{\circ} - 82^{\circ}
                                                  = 52°
                                            x^{\circ} = 26^{\circ}
                 \therefore x = 26
        (b) x^{\circ} + 58^{\circ} + 58^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)
                                        x^{\circ} = 180^{\circ} - 58^{\circ} - 58^{\circ}
                                               = 64^{\circ}
                 \therefore x = 64
        (c) x^{\circ} + x^{\circ} + 70^{\circ} = 180^{\circ}
                                    2x^{\circ} = 180^{\circ} - 70^{\circ}
                                            = 110^{\circ}
                                       x^{\circ} = 55^{\circ}
                 \therefore x = 55
        (d) 3x^{\circ} = 63^{\circ}
                  x^{\circ} = 21^{\circ}
                 \therefore x = 21
        (e) 3y^\circ = 48^\circ (base \angle s of isos. \triangle)
                   v^{\circ} = 16^{\circ}
                 2x^\circ + 3y^\circ + 48^\circ = 180^\circ (\angle \text{ sum of } \triangle)
                                         2x^{\circ} = 180^{\circ} - 3y^{\circ} - 48^{\circ}
                                                 = 180^{\circ} - 3(16^{\circ}) - 48^{\circ}
                                                 = 180^{\circ} - 48^{\circ} - 48^{\circ}
                                                 = 84^{\circ}
                                           x^{\circ} = 42^{\circ}
                 \therefore x = 42 and y = 16
2. (a) x^{\circ} + 39^{\circ} = 123^{\circ} (ext. \angle of \triangle)
                             x^{\circ} = 123^{\circ} - 39^{\circ}
                                   = 84^{\circ}
                  \therefore x = 84
        (b) y^{\circ} + 40^{\circ} = 180^{\circ} (adj. \angles on a str. line)
                             y^{\circ} = 180^{\circ} - 40^{\circ}
                             y^{\circ} = 140^{\circ}
                 4x^{\circ} + 3x^{\circ} = y^{\circ} = 140^{\circ} \text{ (ext. } \angle \text{ of } \triangle)
                             7x^{\circ} = 140^{\circ}
                               x^{\circ} = 20^{\circ}
                 \therefore x = 20 and y = 140
        (c) 26^\circ + 26^\circ = x^\circ (\text{ext.} \angle \text{ of } \triangle)
                               x^\circ = 52^\circ
                 \therefore x = 52
```

(d) $\angle CAD = 180^\circ - 110^\circ$ (adj. $\angle s$ on a str. line) $= 70^{\circ}$ $\angle CDA = \angle CAD = 70^{\circ}$ (base $\angle s$ of isos. $\triangle ACD$) $x^{\circ} + 70^{\circ} = 110^{\circ}$ (ext. \angle of \triangle) $x^\circ = 110^\circ - 70^\circ$ $=40^{\circ}$ $\therefore x = 40$ (e) $\angle EAD = x^{\circ}$ (vert. opp. $\angle s$) $x^{\circ} + 72^{\circ} + 50^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ $x^{\circ} = 180^{\circ} - 72^{\circ} - 50^{\circ}$ $= 58^{\circ}$ $\therefore x = 58$ (f) $\angle DAC = 60^{\circ} (\angle s \text{ of equilateral } \triangle ACD)$ $2y^{\circ} + 2y^{\circ} = 60^{\circ}$ (base $\angle s$ of isos. $\triangle ACB$, $4y^{\circ} = 60^{\circ}$ ext. \angle of \triangle) $y^{\circ} = 15^{\circ}$ $\therefore v = 15$ 3. (a) $\angle CAB = 46^{\circ}$ (alt. $\angle s$, DE //AB) $x^{\circ} + 46^{\circ} = 91^{\circ} (\text{ext.} \angle \text{ of } \triangle ACB)$ $x^{\circ} = 91^{\circ} - 46^{\circ}$ = 45° $\therefore x = 45$ (**b**) $\angle CBA = 3x^{\circ}$ (alt. \angle s, *CD* // *AB*) $3x^{\circ} + 2x^{\circ} + 55^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle ACB)$ $5x^{\circ} = 180^{\circ} - 55^{\circ}$ = 125° $x^{\circ} = 25^{\circ}$ $\therefore x = 25$ (c) $\angle BDA = x^{\circ}$ (base $\angle s$ of isos. $\triangle ABD$) $x^{\circ} + x^{\circ} + x^{\circ} + 63^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle ADC)$ $3x^{\circ} = 180^{\circ} - 63^{\circ} = 117^{\circ}$ $x^{\circ} = 39^{\circ}$ $\therefore x = 39$ (d) $\angle DBA = 58^{\circ}$ (alt. $\angle s$, DE //AB) $x^{\circ} + 58^{\circ} = 79^{\circ}$ (ext. \angle of $\triangle ACB$) $x^{\circ} = 79^{\circ} - 58^{\circ}$ = 21° $y^{\circ} + 79^{\circ} + 3x^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle ACD)$ $3x^{\circ} + y^{\circ} = 180^{\circ} - 79^{\circ} = 101^{\circ}$ $y^{\circ} = 101^{\circ} - 3x^{\circ}$ $= 101^{\circ} - 3(21^{\circ})$ $= 38^{\circ}$ $\therefore x = 21$ and y = 38

4. (a) $2x^{\circ} + 62^{\circ} = 134^{\circ}$ (ext. \angle of \triangle) $2x^{\circ} = 134^{\circ} - 62^{\circ}$ = 72° $x^{\circ} = 36^{\circ}$ $\angle BCE = 2x^{\circ}$ (alt. $\angle s$, CE //AB) $y^{\circ} + 134^{\circ} + 2x^{\circ} = 360^{\circ} (\angle s \text{ at a point})$ $v^{\circ} = 360^{\circ} - 134^{\circ} - 2(36^{\circ})$ $= 360^{\circ} - 134^{\circ} - 72^{\circ}$ $= 154^{\circ}$ $\therefore x = 36$ and y = 154**(b)** $\angle ACD = 180^{\circ} - 109^{\circ}$ (int. $\angle s$, *ED* // *AF*) $= 71^{\circ}$ $x^{\circ} + 24^{\circ} = 71^{\circ}$ (ext. \angle of $\triangle ABC$) $x^{\circ} = 71^{\circ} - 24^{\circ}$ $=47^{\circ}$ $\therefore x = 47$ (c) $y^{\circ} + 63^{\circ} = 142^{\circ}$ (ext. \angle of \triangle) $y^{\circ} = 142^{\circ} - 63^{\circ}$ $= 79^{\circ}$ $\angle ADF + 63^\circ = 180^\circ$ (int. $\angle s$, EF //AC) $\angle ADF = 180^\circ - 63^\circ$ $= 117^{\circ}$ $x^{\circ} = \angle ADF = 117^{\circ}$ (vert. opp. $\angle s$) $\therefore x = 117 \text{ and } y = 79$ (d) $\angle DEC = y^{\circ}$ (alt. $\angle s$, ED // AC) $4x^{\circ} + y^{\circ} = 180^{\circ}$ (adj. \angle s on a str. line) $y^{\circ} = 180^{\circ} - 4x^{\circ}$ $\angle ECD = 180^\circ - y^\circ - 36^\circ$ $= 144^{\circ} - v^{\circ}$ $144^{\circ} - y^{\circ} + 2x^{\circ} = 4x^{\circ}$ (ext. \angle of $\triangle DEC$) $144^{\circ} - (180^{\circ} - 4x^{\circ}) + 2x^{\circ} = 4x^{\circ}$ $2x^{\circ} = 36^{\circ}$ $x^{\circ} = 18^{\circ}$ $v^{\circ} = 180^{\circ} - 4(18^{\circ})$ $= 108^{\circ}$ $\therefore x = 18 \text{ and } y = 108$ 5. (i) $\angle BAC = 36^{\circ}$ (base $\angle s$ of isos. $\triangle ABC$) $\angle ACD = \angle ABC + \angle BAC$ (ext. \angle of $\triangle ABC$) $= 36^{\circ} + 36^{\circ}$ $= 72^{\circ}$ $\angle ADC = \angle ACD = 72^{\circ}$ (base $\angle s$ of isos. $\triangle ACD$) $\angle CAD = 180^\circ - 72^\circ - 72^\circ (\angle \text{ sum of } \triangle ACD)$ $= 36^{\circ}$ (ii) $\angle ADE = \angle CAD + \angle ACD$ (ext. \angle of $\triangle ACD$) $= 72^{\circ} + 36^{\circ}$ $= 108^{\circ}$

6. (a) $x^{\circ} + 29^{\circ} = 90^{\circ} (\angle DAB$ is a right angle) $x^{\circ} = 90^{\circ} - 29^{\circ}$ $= 61^{\circ}$ $y^{\circ} = \angle BAC = 29^{\circ}$ (alt. $\angle s$, DC //AB) $\therefore x = 61$ and y = 29**(b)** $x^{\circ} = \frac{180^{\circ} - 118^{\circ}}{100}$ (base \angle s of isos. \triangle) = 31° $\angle CBD + 31^\circ = 90^\circ (\angle CBA \text{ is a right angle})$ $\angle CBD = 90^\circ - 31^\circ$ $= 59^{\circ}$ $y^{\circ} + 59^{\circ} = 118^{\circ}$ (ext. \angle of \triangle) $y^{\circ} = 118^{\circ} - 59^{\circ}$ $= 59^{\circ}$ $\therefore x = 31 \text{ and } y = 59$ (c) $x^{\circ} + x^{\circ} = (3x - 18)^{\circ}$ (ext. \angle of \triangle) $2x^\circ = 3x^\circ - 18^\circ$ $x^{\circ} = 18^{\circ}$ $y^{\circ} + x^{\circ} + 90^{\circ} - x^{\circ} + x^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle ABD)$ $v^{\circ} = 180^{\circ} - 90^{\circ} - x^{\circ}$ $= 180^{\circ} - 90^{\circ} - 18^{\circ}$ $= 72^{\circ}$ $\therefore x = 18 \text{ and } y = 72$ (d) $2x^{\circ} + 2x^{\circ} = 180^{\circ} - (162 - 3x)^{\circ}$ (ext. \angle of \triangle) $4x^{\circ} = 180^{\circ} - 162^{\circ} + 3x^{\circ}$ $x^{\circ} = 18^{\circ}$ $\angle DAC = 90^{\circ} - 2(18^{\circ})$ $= 54^{\circ}$ $y^{\circ} + 54^{\circ} = (162 - 3x)^{\circ}$ (ext. \angle of \triangle) $y^{\circ} = (162 - 3x)^{\circ} - 54^{\circ}$ $=(162 - 3(18))^{\circ} - 54^{\circ}$ $= 108^{\circ} - 54^{\circ}$ = 54° $\therefore x = 18 \text{ and } y = 54$ 7. (a) $y^{\circ} = 120^{\circ}$ (opp. \angle s of //gram) $x^{\circ} + 24^{\circ} + y^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle ABC)$ $x^{\circ} = 180^{\circ} - 24^{\circ} - y^{\circ}$ $= 180^{\circ} - 24^{\circ} - 120^{\circ}$ = 36° $\therefore x = 36 \text{ and } y = 120$ **(b)** $7x^{\circ} + 5x^{\circ} = 180^{\circ}$ (int. $\angle s$, *DC* // *AB*) $12x^{\circ} = 180^{\circ}$ $x^{\circ} = 15^{\circ}$ $2y^\circ = 5x^\circ$ (opp. \angle s of //gram) $2y^{\circ} = 5(15^{\circ})$ $2v^{\circ} = 75^{\circ}$ $v^{\circ} = 37.5^{\circ}$ $\therefore x = 15 \text{ and } y = 37.5$

_ 41 🔾

(c) $\angle DAB = 180^\circ - 68^\circ$ (int. $\angle s$, AD // BC) $= 112^{\circ}$ $x^{\circ} + 112^{\circ} = 139^{\circ}$ (ext. \angle of \triangle) $x^{\circ} = 139^{\circ} - 112^{\circ}$ $= 27^{\circ}$ $y^{\circ} + x^{\circ} = 68^{\circ}$ (opp. \angle s of //gram) $v^{\circ} = 68^{\circ} - x^{\circ}$ $= 68^{\circ} - 27^{\circ}$ $= 41^{\circ}$ $\therefore x = 27$ and y = 418. (a) $y^{\circ} = \frac{180^{\circ} - 58^{\circ}}{2}$ (base $\angle s$ of isos. $\triangle ABC$) $= 61^{\circ}$ $x^{\circ} = 180^{\circ} - 31^{\circ} - 31^{\circ}$ (base \angle s of isos. $\triangle ACD$) $= 118^{\circ}$ $\therefore x = 118 \text{ and } y = 61$ **(b)** $x^{\circ} + 33^{\circ} + 56^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle ABD)$ $x^{\circ} = 180^{\circ} - 33^{\circ} - 56^{\circ}$ $= 91^{\circ}$ $v^{\circ} = 33^{\circ}$ $\therefore x = 91$ and y = 33(c) $(x + 5)^{\circ} + 90^{\circ} + 28^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ $x^{\circ} + 5^{\circ} + 90^{\circ} + 28^{\circ} = 180^{\circ}$ $x^{\circ} = 180^{\circ} - 5^{\circ} - 90^{\circ} - 28^{\circ}$ $= 57^{\circ}$ $(y-6)^{\circ} + 47^{\circ} + 90^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ $y^{\circ} - 6^{\circ} + 47^{\circ} + 90^{\circ} = 180^{\circ}$ $y^{\circ} = 180^{\circ} + 6^{\circ} - 47^{\circ} - 90^{\circ}$ = 49° $\therefore x = 57 \text{ and } y = 49$ (d) $(x-5)^{\circ} + 63^{\circ} + 90^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ $x^{\circ} - 5^{\circ} + 63^{\circ} + 90^{\circ} = 180^{\circ}$ $x^{\circ} = 180^{\circ} + 5^{\circ} - 63^{\circ} - 90^{\circ}$ $= 32^{\circ}$ $(2y-3)^{\circ} + 37^{\circ} + 90^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ $2y^{\circ} - 3^{\circ} + 37^{\circ} + 90^{\circ} = 180^{\circ}$ $2v^{\circ} = 180^{\circ} + 3^{\circ} - 37^{\circ} - 90^{\circ}$ = 56° $v^{\circ} = 28^{\circ}$ $\therefore x = 32$ and y = 289. (a) Sum of interior angles of a polygon with 7 sides $= (n-2) \times 180^{\circ}$ $= (7 - 2) \times 180^{\circ}$ = 900° (b) Sum of interior angles of a polygon with 17 sides

- $= (n-2) \times 180^{\circ}$
- $= (17 2) \times 180^{\circ}$
- = 2700°

- (c) Sum of interior angles of a polygon with 22 sides $= (n-2) \times 180^{\circ}$ $= (22 - 2) \times 180^{\circ}$ = 3600° (d) Sum of interior angles of a polygon with 30 sides $= (n-2) \times 180^{\circ}$ $= (30 - 2) \times 180^{\circ}$ = 5040° 10. (a) Sum of interior angles of a polygon with 4 sides $= (n-2) \times 180^{\circ}$ $= (4 - 2) \times 180^{\circ}$ $= 360^{\circ}$ $a^{\circ} + 125^{\circ} + 65^{\circ} + 92^{\circ} = 360^{\circ}$ $a^{\circ} = 360^{\circ} - 125^{\circ} - 65^{\circ} - 92^{\circ}$ $= 78^{\circ}$ $\therefore a = 78$ (b) Sum of interior angles of a polygon with 4 sides $= (n-2) \times 180^{\circ}$ $= (4 - 2) \times 180^{\circ}$ = 360° $2b^{\circ} + 105^{\circ} + 75^{\circ} + b^{\circ} = 360^{\circ}$ $2b^{\circ} + b^{\circ} = 360^{\circ} - 105^{\circ} - 75^{\circ}$ $3b^{\circ} = 180^{\circ}$ $b^{\circ} = 60^{\circ}$ $\therefore b = 60$ (c) Sum of interior angles of a polygon with 5 sides $= (n-2) \times 180^{\circ}$ $= (5-2) \times 180^{\circ}$
 - $= (3 2) \times 180^{\circ}$ = 540° $c^{\circ} + (2c - 15)^{\circ} + 130^{\circ} + 65^{\circ} + 120^{\circ} = 540^{\circ}$ $c^{\circ} + 2c^{\circ} = 540^{\circ} + 15^{\circ} - 130^{\circ} - 65^{\circ} - 120^{\circ}$ $3c^{\circ} = 240^{\circ}$ $c^{\circ} = 80^{\circ}$ ∴ c = 80
- **11.** Let the number of sides of the regular polygon be n.

Size of each interior angle = $\frac{(n-2) \times 180^{\circ}}{n}$

(a)
$$\frac{(n-2) \times 180^{\circ}}{n} = 108^{\circ}$$
$$(n-2) \times 180 = 108n$$
$$180n - 108n = 2 \times 180$$
$$72n = 360$$
$$n = 5$$
(b)
$$\frac{(n-2) \times 180^{\circ}}{n} = 156^{\circ}$$
$$(n-2) \times 180 = 156n$$
$$180n - 156n = 2 \times 180$$
$$24n = 360$$
$$n = 15$$

12. Let the number of sides of the regular polygon be *n*.

Size of each exterior angle = $\frac{360^{\circ}}{n}$.

(a)
$$\frac{360^{\circ}}{n} = 5^{\circ}$$

 $5n = 360$
 $n = 72$
(b) $\frac{360^{\circ}}{n} = 6^{\circ}$
 $6n = 360$
 $n = 60$
(c) $\frac{360^{\circ}}{n} = 8^{\circ}$
 $8n = 360$
 $n = 45$
(d) $\frac{360^{\circ}}{n} = 18^{\circ}$

$$\frac{360}{n} = 18^{\circ}$$

$$18n = 360$$

$$n = 20$$

- **13.** (a) Size of each exterior angle = $\frac{360^\circ}{6} = 60^\circ$
 - **(b)** Size of each exterior angle = $\frac{360^{\circ}}{8} = 45^{\circ}$
 - (c) Size of each exterior angle = $\frac{360^{\circ}}{24} = 15^{\circ}$
 - (d) Size of each exterior angle = $\frac{360^{\circ}}{72} = 5^{\circ}$
- 14. (a) The sum of interior angles of the polygon is 1620°. i.e. $(n-2) \times 180^\circ = 1620^\circ$
 - : Number of sides of the polygon

$$=\frac{1620}{180}+2=11$$

- (b) The sum of interior angles of the polygon is 3600° i.e. (n − 2) × 180° = 3600°
 - \therefore Number of sides of the polygon

$$=\frac{3600}{180}+2=22$$

- (c) The sum of interior angles of the polygon is 4500°.
 i.e. (n-2) × 180° = 4500°
 - ... Number of sides of the polygon

$$=\frac{4500}{180} + 2 = 27$$

- (d) The sum of interior angles of the polygon is 7020°. i.e. $(n-2) \times 180^\circ = 7020^\circ$
 - ... Number of sides of the polygon

$$=\frac{7020}{180}+2=41$$

15. (i) The sum of exterior angles of a triangle = 360°. $(2x + 10)^\circ + (3x - 5)^\circ + (2x + 40)^\circ = 360^\circ$ $2x^\circ + 3x^\circ + 2x^\circ = 360^\circ - 10^\circ + 5^\circ - 40^\circ$ $7x^\circ = 315^\circ$ $x^\circ = 45^\circ$ ∴ x = 45

- (ii) The largest exterior angle gives the smallest interior angle. The largest exterior angle
 - $=(3x-5)^{\circ} \text{ or } (2x+40)^{\circ}$
 - $= (3 \times 45 5)^{\circ} \text{ or } (2 \times 45 + 40)^{\circ}$
 - = 130°
 - The smallest interior angle = $180^{\circ} 130^{\circ} = 50^{\circ}$
- (iii) The smallest exterior angle gives the largest interior angle.

The smallest exterior angle = $(2x + 10)^{\circ}$

$$=(2 \times 45 + 10)^{\circ}$$

The largest interior angle = $180^{\circ} - 100^{\circ} = 80^{\circ}$

$$= (n-2) \times 180^{\circ}$$

= (4-2) × 180°
= 360°
(2x + 15)° + (2x - 5)° + (3x + 75)° + (3x - 25)°
= 360°
2x° + 2x° + 3x° + 3x° = 360° - 15° + 5° - 75°
+ 25°
10x° = 300°
x° = 30°

 $\therefore x = 30$

(ii) Smallest interior angle

$$= (2x - 5)^{\circ}$$

= $(2 \times 30 - 5)^{\circ}$

= 55°

(iii) Largest interior angle gives the smallest exterior angle

- Largest interior angle
- $=(3x+75)^{\circ}$
- $=(3 \times 30 + 75)^{\circ}$

Smallest exterior angle = $180^{\circ} - 165^{\circ} = 15^{\circ}$

17. (i) Sum of interior angles of a hexagon **19.** (i) The sum of interior angles of a quadrilateral = 360° 30 parts = 360° $= (n - 2) \times 180^{\circ}$ $= (6 - 2) \times 180^{\circ}$ 1 part = 12° = 720° 9 parts = $12 \times 9 = 108^{\circ}$ $(2x + 17)^{\circ} + (3x - 25)^{\circ} + (2x + 49)^{\circ} + (x + 40)^{\circ} +$ The largest interior angle = 108° . $(4x - 17)^{\circ} + (3x - 4)^{\circ} = 720^{\circ}$ (ii) 6 parts = $12^{\circ} \times 6 = 72^{\circ}$ $2x^{\circ} + 3x^{\circ} + 2x^{\circ} + x^{\circ} + 4x^{\circ} + 3x^{\circ}$ The smallest interior angle = 72° . $= 720^{\circ} - 17^{\circ} + 25^{\circ} - 49^{\circ} - 40^{\circ} + 17^{\circ} + 4^{\circ}$ The largest exterior angle $15x^{\circ} = 660^{\circ}$ $= 180^{\circ} - 72^{\circ}$ $x^{\circ} = 44^{\circ}$ = 108° $\therefore x = 44$ 20. (ii) Smallest interior angle of the hexagon $=(x+40)^{\circ}$ $=(44+40)^{\circ}$ = 84° (iii) The largest interior angle gives the smallest exterior angle. The largest interior angle $= (4x - 17)^{\circ}$ $= (4 \times 44 - 17)^{\circ}$ 9.2 cm 7.9 cm $= 159^{\circ}$ The smallest exterior angle = $180^{\circ} - 159^{\circ} = 21^{\circ}$ 18. (i) The sum of exterior angles of a pentagon = 360° . $2x^{\circ} + (2x+5)^{\circ} + (3x+10)^{\circ} + (3x-15)^{\circ} + (x+30)^{\circ}$ = 360° $2x^{\circ} + 2x^{\circ} + 3x^{\circ} + 3x^{\circ} + x^{\circ}$ $= 360^{\circ} - 5^{\circ} - 10^{\circ} + 15^{\circ} - 30^{\circ}$ $11x^{\circ} = 330^{\circ}$ 8.3 cm B $x^{\circ} = 30^{\circ}$ $\angle ABC = 69^{\circ}$ $\therefore x = 30$ (ii) The largest exterior angle gives the smallest interior angle. The largest exterior angle $=(3x+10)^{\circ}$ $=(3 \times 30 + 10)^{\circ}$ $= 100^{\circ}$ The smallest interior angle $= 180^{\circ} - 100^{\circ} = 80^{\circ}$ (iii) The smallest exterior angle gives the largest interior angle. Smallest exterior angle $= 2x^{\circ}$ $= 2(30^{\circ}) = 60^{\circ}$ The largest interior angle = $180^{\circ} - 60^{\circ} = 120^{\circ}$

30. (a) $\angle BEF = 180^{\circ} - 84^{\circ} = 96^{\circ}$ (adj. $\angle s$ on a str. line) Sum of angles in a quadrilateral is 360°. $x^{\circ} + 92^{\circ} + 118^{\circ} + 96^{\circ} = 360^{\circ}$ $x^{\circ} = 360^{\circ} - 92^{\circ} - 118^{\circ} - 96^{\circ}$ $= 54^{\circ}$ $y^{\circ} + x^{\circ} + 92^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ $v^{\circ} = 180^{\circ} - x^{\circ} - 92^{\circ}$ $= 180^{\circ} - 54^{\circ} - 92^{\circ}$ $= 34^{\circ}$ $\therefore x = 54$ and y = 34**(b)** $\angle EBA = 53^{\circ} (\text{corr. } \angle \text{s}, CD // AB)$ $y^{\circ} + 53^{\circ} = 360^{\circ} (\angle s \text{ at a point})$ $v^{\circ} = 360^{\circ} - 53^{\circ}$ $= 307^{\circ}$ $\angle FED = 53^{\circ}$ (base $\angle s$ of isos. \triangle) $x^\circ = 53^\circ + 53^\circ$ (ext. \angle of \triangle , corr. \angle s) = 106° $\therefore x = 106 \text{ and } y = 307$ (c) $x^{\circ} + 25^{\circ} + 121^{\circ} = 180^{\circ}$ (corr. $\angle s$, adj. \angle s on a str. line) $x^{\circ} = 180^{\circ} - 25^{\circ} - 121^{\circ}$ $= 34^{\circ}$ $y^{\circ} + x^{\circ} + 78^{\circ} = 180^{\circ} (\angle \text{ sum of } \triangle)$ $y^{\circ} = 180^{\circ} - x^{\circ} - 78^{\circ}$ $= 180^{\circ} - 34^{\circ} - 78^{\circ}$ = 68° $\therefore x = 34 \text{ and } y = 68$ (d) $x^{\circ} + 124^{\circ} = 180^{\circ}$ (corr. $\angle s$, adj. $\angle s$ on a str. line) $x^{\circ} = 180^{\circ} - 124^{\circ}$ = 56° $\angle ABD = 103^{\circ}$ (corr. $\angle s$) $y^{\circ} + 103^{\circ} = 180^{\circ}$ (adj. \angle s on a str. line) $y^{\circ} = 180^{\circ} - 103^{\circ}$ = 77° $z^{\circ} + y^{\circ} = 124^{\circ} \text{ (ext. } \angle \text{ of } \bigtriangleup)$ $z^{\circ} = 124^{\circ} - y^{\circ}$ $= 124^{\circ} - 77^{\circ}$ = 47° $\therefore x = 56, y = 77 \text{ and } z = 47$

(e) Draw a line PQ through C that is parallel to AEand BD.

31. Sum of angles in a triangle = 180°

$$(2x - 5)^{\circ} + (3x - \frac{1}{2})^{\circ} + (30 - \frac{1}{2}x)^{\circ} = 180^{\circ}$$

$$2x^{\circ} + 3x^{\circ} - \frac{1}{2}x^{\circ} = 180^{\circ} + 5^{\circ} + \frac{1}{2}^{\circ} - 30^{\circ}$$

$$4.5x^{\circ} = 155.5^{\circ}$$

$$x^{\circ} = 34 \frac{5}{9}$$
32. (a) $64^{\circ} + \angle ADC = 180^{\circ} (int. \angle s, DC // AB)$

$$\angle ADC = 180^{\circ} - 64^{\circ}$$

$$= 116^{\circ}$$

$$x^{\circ} = \frac{1}{2} \times 116^{\circ}$$

$$= 58^{\circ}$$

$$y^{\circ} = x^{\circ} (alt. \angle s, DA // CB)$$

$$= 58^{\circ}$$

$$y^{\circ} = x^{\circ} (alt. \angle s, DA // CB)$$

$$= 58^{\circ}$$

$$\therefore x = y = 58$$
(b) $108^{\circ} + \angle BAD = 180^{\circ} (int. \angle s, BC // AD)$

$$\angle BAD = 180^{\circ} - 108^{\circ}$$

$$= 72^{\circ}$$

$$x^{\circ} = \frac{1}{2} \times 72^{\circ}$$

$$= 36^{\circ}$$

$$y^{\circ} = x^{\circ} (alt. \angle s, DC // AB)$$

$$= 36^{\circ}$$

$$\therefore x = y = 36$$
(c) $(y - 5)^{\circ} = 36^{\circ} (alt. \angle s, DC // AB)$

$$y^{\circ} = 36^{\circ} + 5^{\circ}$$

$$y^{\circ} = 41^{\circ}$$

$$x^{\circ} = (y - 5)^{\circ}$$

$$= (41 - 5)^{\circ}$$

$$x^{\circ} = 36^{\circ}$$

$$(3x - 30)^{\circ} = (2x + 15)^{\circ} (opp. \angle s of //gram)$$

$$3x^{\circ} - 2x^{\circ} = 15^{\circ} + 30^{\circ}$$

$$x^{\circ} = 45^{\circ}$$

$$(3x - 30)^{\circ} + \angle BCD = 180^{\circ} (int. \angle s, BA // CD)$$

$$\angle BCD = 180^{\circ} - (3x - 30)^{\circ}$$

$$= 180^{\circ} - (3 \times 45 - 30)$$

$$= 75^{\circ}$$

$$y^{\circ} = \frac{1}{2} \times 75^{\circ}$$

$$= 37.5^{\circ}$$

$$\therefore x = 45, y = 37.5 \text{ and } z = 37.5$$

1000

. • 1

(ii) $114^{\circ} + \angle BCD = 180^{\circ}$ (int. $\angle s$, AD // BC) $\angle BCD = 180^{\circ} - 114^{\circ}$ $= 66^{\circ}$ (iii) $\angle DCP = \angle CDQ = 101^{\circ}$ (alt. $\angle s$, PC // DQ) $\angle PCB = 101^\circ - 66^\circ$ $= 35^{\circ}$ **40. (i)** $\angle DAC = 33^{\circ}$ $\angle QBC = 66^{\circ}$ (corr. $\angle s$, AD // BC) (ii) $66^\circ + \angle ADC = 180^\circ$ (int. $\angle s, AB // DC$) $\angle ADC = 180^\circ - 66^\circ$ $= 114^{\circ}$ $\angle ADB = 114^\circ \div 2 = 57^\circ$ $\angle DBC = \angle ADB$ (alt. $\angle s$, AD // BC) $= 57^{\circ}$ (iii) $\angle BCD = 66^{\circ}$ (opp. $\angle s$ in a //gram) $72^{\circ} + 66^{\circ} + \text{Reflex} \angle BCR = 360^{\circ} (\angle \text{s at a point})$ Reflex $\angle BCR = 360^\circ - 72^\circ - 66^\circ$ $= 222^{\circ}$ **41.** (i) $\angle AEB = 180^{\circ} - 52^{\circ} - 90^{\circ} (\angle \text{ sum of } \triangle)$ = 38° $\angle PEQ = \angle AEB$ (vert. opp. $\angle s$) $= 38^{\circ}$ (ii) $\angle QED = 90^{\circ} - 38^{\circ} = 52^{\circ}$ $\angle EDR = 180^\circ - 52^\circ$ (int. $\angle s$, QE //RD) = 128° (iii) $\angle EDC = 360^{\circ} - 126^{\circ} - 128^{\circ} (\angle s \text{ at a point})$ $= 106^{\circ}$ $\angle BCD + 106^\circ = 180^\circ$ (int. $\angle s$, ED // AC) $\angle BCD = 180^{\circ} - 106^{\circ}$ $= 72^{\circ}$ **42.** (i) $\angle ABO = 45^{\circ} - 21^{\circ}$ = 24° $\angle BAQ = \frac{180^\circ - 24^\circ}{1000}$ (base $\angle s$ of isos. $\triangle ABQ$ $= 78^{\circ}$ (ii) Since BQ = BA, BQ = BC, $\angle ABC = 45^{\circ} + 21^{\circ}$ $= 66^{\circ}$ $\angle BCQ = \frac{180^\circ - 66^\circ}{2}$ (base $\angle s$ of isos. $\triangle QBC$) = 57° $\angle DCQ = 90^{\circ} - 57^{\circ}$ $= 33^{\circ}$ (iii) $\angle DPC = 180^\circ - 45^\circ - 33^\circ (\angle \text{ sum of } \triangle)$ $= 102^{\circ}$ $\angle QPB = 102^{\circ}$ (vert. opp. $\angle s$)

43. (i) $\angle QAD = 60^{\circ} (\angle s \text{ of equilateral } \triangle)$ $\angle BAD + 90^{\circ} + 135^{\circ} + 60^{\circ} = 360^{\circ} (\angle s \text{ at a point})$ $\angle BAD = 360^{\circ} - 90^{\circ} - 135^{\circ} - 60^{\circ}$ $= 75^{\circ}$ (ii) Sum of interior angles of a quadrilateral = 360° . $\angle CDA + 106^{\circ} + 100^{\circ} + 75^{\circ} = 360^{\circ} (\angle s \text{ at a point})$ $\angle CDA = 360^{\circ} - 106^{\circ} - 100^{\circ} - 75^{\circ}$ = 79° (iii) $\angle QDP + 60^\circ + 79^\circ = 180^\circ$ (adj. \angle s on a str. line) $\angle QDP = 180^\circ - 60^\circ - 79^\circ$ $= 41^{\circ}$ **44.** (i) $\angle ABC = 180^{\circ} - 68^{\circ} - 68^{\circ}$ (base $\angle s$ of isos. $= 44^{\circ}$ $\triangle ABC$) (ii) $\angle ACD = 68^{\circ}$ $\angle ADC = 180^\circ - 68^\circ - 68^\circ (\angle \text{ sum of } \triangle)$ $= 44^{\circ}$ $60^{\circ} + 90^{\circ} + \angle ADP = 180^{\circ} (\angle \text{ sum of } \triangle)$ $\angle ADP = 180^{\circ} - 90^{\circ} - 60^{\circ}$ = 30° $\angle PDQ + \angle ADP = \angle ADC$ $\angle PDQ = \angle ADC - \angle ADP$ $= 44^{\circ} - 30^{\circ}$ $= 14^{\circ}$ (iii) $\angle DQR = \angle PDQ + \angle DPR$ $= 14^{\circ} + 90^{\circ}$ = 104° **45.** (i) $\angle TBD = 180^{\circ} - 81^{\circ}$ (int. $\angle s$, *BD* // *TE*) $= 99^{\circ}$ $\angle DBC = 61^{\circ}$ (alt. $\angle s$, ED // BC) $\angle ABT = 180^\circ - 99^\circ - 61^\circ$ (adj. $\angle s$ on a str. line) $= 20^{\circ}$ (ii) $\angle TED = 180^\circ - 61^\circ$ (int. $\angle s$, *DB* // *ET*) $= 119^{\circ}$ (iii) $\angle BCD = 180^{\circ} - 61^{\circ} - 61^{\circ}$ = 58° **46.** (i) $\angle BAD = 180^{\circ} - 88^{\circ}$ (int. $\angle s, BC //AD$) = 92° $\angle DAE = 180^{\circ} - 92^{\circ}$ (adj. $\angle s$ on a str. line) = 88° $\angle AED = \frac{180^\circ - 88^\circ}{2}$ (base $\angle s$ of isos. $\triangle ADE$) $= 46^{\circ}$ (ii) $\angle FAB = 180^\circ - 162^\circ$ (adj. $\angle s$ on a str. line) $= 18^{\circ}$ $\angle FAD = \angle FAB + \angle BAD$ $= 18^{\circ} + 92^{\circ}$ $= 110^{\circ}$

51)

(iii) $\angle ADC = 88^{\circ}$ (opp. $\angle s$ in a //gram) Sum of angles in a quadrilateral = 360° $\angle FCD + 48^{\circ} + 110^{\circ} + 88^{\circ} = 360^{\circ}$ $\angle FCD = 360^{\circ} - 48^{\circ} - 110^{\circ} - 88^{\circ}$ $= 114^{\circ}$ $\angle BCF = \angle FCD - \angle BCD$ $= 114^{\circ} - 92^{\circ}$ $= 22^{\circ}$

47. Let the number of sides of the polygon be *n*. Sum of interior angles = $(n - 2) \times 180^{\circ}$ Sum of exterior angles = 360° $(n - 2) \times 180^{\circ} = 2 \times 360^{\circ}$

180n - 360 = 720 180n = 720 + 360 = 1080n = 6

- \therefore The number of sides of the polygon is 6.
- **48.** Let the number of sides of the regular polygon be *n*.

Size of each interior angle =
$$\frac{(n-2) \times 180}{n}$$

Size of each exterior angle = $\frac{360^{\circ}}{n}$
 $\frac{(n-2) \times 180^{\circ}}{n} = 35 \times \frac{360^{\circ}}{n}$
 $(n-2) \times 180^{\circ} = 35 \times 360^{\circ}$
 $180n - 360 = 12\ 600$
 $180n = 12\ 600 + 360$
 $= 12\ 960$
 $n = 72$
49. D

A B
Size of each exterior angle of the pentagon =
$$\frac{360^{\circ}}{5}$$

$$\angle CBT = \angle BCT = 72^{\circ}$$
$$\angle BTC = 180^{\circ} - 72^{\circ} - 72^{\circ} \ (\angle \text{ sum of } \triangle)$$
$$= 36^{\circ}$$

50. (i) Size of each interior angle = $\frac{(12-2) \times 180^{\circ}}{12}$ $= 150^{\circ}$ $\therefore \angle ABC = 150^{\circ}$ (ii) $\angle BCA = \frac{180^\circ - 150^\circ}{2} = 15^\circ$ $\angle ACD + \angle BCA = \angle BCD = 150^{\circ}$ $\angle ACD = 150^{\circ} - \angle BCA$ $= 150^{\circ} - 15^{\circ}$ = 135° **51.** (a) Let the number of sides of the polygon be *n*. Sum of interior angles = $(n - 2) \times 180^{\circ}$ $(n-2) \times 180^{\circ} = 124^{\circ} + (n-1) \times 142^{\circ}$ 180n - 360 = 124 + 142n - 142180n - 142n = 124 - 142 + 36038*n* = 342 *n* = 9 . The number of sides of the polygon is 9. (b) Size of each angle in a pentagon ABCDE $= \frac{(5-2) \times 180^{\circ}}{}$ 5 $= 108^{\circ}$ Size of each angle in a hexagon CDZYXW $= (6 - 2) \times 180^{\circ}$ 6 = 120° (i) $\angle WCD$ = size of each angle in a hexagon $= 120^{\circ}$ (ii) $\angle BCD$ = size of each angle in a pentagon $= 108^{\circ}$ (iii) Since CB = CW, $\triangle BCW$ is an isosceles triangle. $\angle BCW = 360^\circ - 108^\circ - 120^\circ (\angle s \text{ at a point})$ $= 132^{\circ}$ $\angle CBW = \frac{180^\circ - 132^\circ}{2}$ (base $\angle s$ of isos. $\triangle BCW$) $= 24^{\circ}$ 52. (i) $\angle CBA = 180^\circ - 18^\circ$ (adj. $\angle s$ on a str. line) = 162° (ii) Size of each interior angle = $\frac{(n-2) \times 180^{\circ}}{n}$ $162 = \frac{(n-2) \times 180^\circ}{n}$ $162n = (n-2) \times 180^{\circ}$ 162n = 180n - 360180n - 162n = 36018n = 360n = 20

 \therefore The value of *n* is 20.

52

Advanced

54.

(i) For
$$\triangle BCD$$
,
 $a^{\circ} = x^{\circ}$ (base $\angle s$ of isos. $\triangle BCD$)
 $b^{\circ} = 180^{\circ} - x^{\circ} - x^{\circ} (\angle sum of \triangle BCD)$
 $= 180^{\circ} - 2x^{\circ}$
For $\triangle ADB$,
 $c^{\circ} = 180^{\circ} - b^{\circ}$ (adj. $\angle s$ on a str. line)
 $= 180^{\circ} - 180^{\circ} + 2x^{\circ}$
 $= 2x^{\circ}$
 $e^{\circ} = c^{\circ}$ (base $\angle s$ of isos. $\triangle ADB$)
 $d^{\circ} = 180^{\circ} - c^{\circ} - e^{\circ} (\angle sum of \triangle ABD)$
 $= 180^{\circ} - 180^{\circ} + 2x^{\circ}$
 $= 2x^{\circ}$
 $e^{\circ} = c^{\circ}$ (base $\angle s$ of isos. $\triangle ADB$)
 $d^{\circ} = 180^{\circ} - x^{\circ} - (180^{\circ} - 4x^{\circ})$ (adj. $\angle s$ on a str. line)
 $= 180^{\circ} - 4x^{\circ}$
For $\triangle ADE$,
 $f^{\circ} = 180^{\circ} - 3x^{\circ} - 180^{\circ} + 4x^{\circ}$
 $= 3x^{\circ}$
 $g^{\circ} = 180^{\circ} - 3x^{\circ} - 3x^{\circ} (\angle sum of \triangle ADE)$
 $= 180^{\circ} - 2x^{\circ} - (180^{\circ} - 6x^{\circ})$ (adj. $\angle s$ on a str. line)
 $= 180^{\circ} - 2x^{\circ} - 180^{\circ} + 6x^{\circ}$
 $= 4x^{\circ}$
 $i^{\circ} = h^{\circ} = 4x^{\circ}$ (base $\angle s$ of isos. $\triangle AEF$)
 $i^{\circ} + x^{\circ} + 90^{\circ} = 180^{\circ}$
 $5x^{\circ} = 180^{\circ} - 90^{\circ} = 90^{\circ}$
 $x^{\circ} = 18^{\circ}$
 $\therefore x = 18$
(ii) Let *n* be the number of isosceles triangles that can be
formed.
From (i),
 $(n + 1)x^{\circ} + 90^{\circ} = 180^{\circ}$
 $When x^{\circ} = 5^{\circ}$,
 $(n + 1)5^{\circ} + 90^{\circ} = 180^{\circ}$

5(n + 1) = 90n + 1 = 18n = 17

when x = 5.

... There are 17 isosceles triangles that can be formed

OXFORD

55. (i) Let polygon A have a sides and polygon B have b

sides.

$$\frac{360}{a} + \frac{360}{b} = 80$$
$$360(a+b) = 80ab$$
$$9(a+b) = 2ab$$
$$9a + 9b = 2ab$$
$$9a = 2ab - 9b$$
$$b = \frac{9a}{2a - 9}$$

- ∴ A possible solution is polygon *A* has 5 sides and polygon *B* has 45 sides.
- (ii) Sum of exterior angles of any polygon = 360°.
 When the exterior angle of their shared side decreases, the corresponding exterior angle of each polygon decreases.

Number of sides = $\frac{500}{\text{size of each exterior angle}}$

Number of sides increases as size of each interior angle in both polygons decreases.

New Trend

56. Let the first angle be x° .

$$x + (x - 10) + 4(x - 10) + \left(x + \frac{120}{100}x\right) = 360$$

$$x + x - 10 + 4x - 40 + 2.2x = 360$$

$$8.2x = 410$$

$$x = 50$$

The angles of the quadrilateral are 50°, 40°, 160° and 110°.

57. Sum of interior angles of a polygon with 6 sides

=
$$(n - 2) \times 180^{\circ}$$

= $(6 - 2) \times 180^{\circ}$
= 720°
 $d^{\circ} + 125^{\circ} + d^{\circ} + 3d^{\circ} + 70^{\circ} + 110^{\circ} = 720$
 $d^{\circ} + d^{\circ} + 3d^{\circ} = 720^{\circ} - 125^{\circ} - 70^{\circ} - 110^{\circ}$
 $5d^{\circ} = 415^{\circ}$
 $d^{\circ} = 83^{\circ}$
∴ $d = 83$

58. Size of each interior angle of the decagon

$$=\frac{(10-2)\times 180^{\circ}}{(10-2)\times 180^{\circ}}$$

= 10 = 144°

Size of each interior angle of the hexagon

$$= \frac{(6-2) \times 180^{\circ}}{6}$$

= 120°
 $x^{\circ} = 360^{\circ} - 144^{\circ} - 120^{\circ} (∠s \text{ at a point})$
= 96°
∴ $x = 96$

59.
$$x^{\circ} + 63^{\circ} = 180^{\circ}$$
 (int. $\angle s, AD // BC$)
 $x^{\circ} = 180^{\circ} - 63^{\circ}$
 $= 117^{\circ}$
 $y^{\circ} = 61^{\circ}$ (alt. $\angle s, DC // AB$)
 $AD = BC = 7.5$ cm
 $z = 7.5$
 $\therefore x = 117, y = 61$ and $z = 7.5$

- 60. (a) Size of each interior angle of a regular 24-sided polygon = $\frac{(24-2) \times 180^{\circ}}{24}$ = 165°
- (b) Let the number of sides of the polygon be *n*. Sum of interior angles = $(n - 2) \times 180^{\circ}$ $(n - 2) \times 180^{\circ} = 172^{\circ} + 2(158^{\circ}) + (n - 3)p^{\circ}$ 488 + (n - 3)p = 180n - 360 (n - 3)p = 180n - 848 $p = \frac{180n - 848}{n - 3}$ 61. (a) Size of each interior angle = $\frac{(n - 2) \times 180^{\circ}}{n}$

$$150^{\circ} = \frac{(n-2) \times 180^{\circ}}{n}$$

$$150n = (n-2) \times 180$$

$$150n = 180n - 360$$

$$180n - 150n = 360$$

$$n = 12$$
b) Size of each exterior angle = $\frac{360^{\circ}}{n}$

$$= \frac{360^{\circ}}{9}$$

$$= 40^{\circ}$$

62. Let the number of sides of the regular polygon be *n*.

Size of each interior angle = $\frac{(n-2) \times 180^{\circ}}{n}$

 $\frac{(n-2) \times 180^{\circ}}{n} = 165.6^{\circ}$ $(n-2) \times 180 = 165.6n$ $180n - 165.6n = 2 \times 180$ 14.4n = 360n = 25

Chapter 11 Symmetry

Basic

- **1.** (a) False
 - (b) False
 - (c) True
 - (d) True
 - (e) False
 - (f) True
 - (g) True
 - (h) False
 - (i) True
 - (j) False
 - (k) False
 - (I) False
- 2. (a) An equilateral triangle has 3 lines of symmetry.

(ii) The equation of the line of symmetry is y = 3.

Chapter 12 Perimeter, Area, Surface Area, and Volume

Basic

1. Circumference of a circle = $2\pi r$ Area of a circle = πr^2

	Diameter	Radius	Circumference	Area
(a)	2 × 10 = 20 cm	10 cm	$2 \times 3.142 \times 10$ = 62.8 cm (to 3 s.f.)	3.142×10^2 = 314 cm ² (to 3 s.f.)
(b)	2 × 0.7495 = 0.150 m (to 3 s.f.)	0.471 ÷ (2 × 3.142) = 0.07495 = 0.0750 m (to 3 s.f.)	0.471 m	3.142×0.07495^2 = 0.0177 m ² (to 3 s.f.)
(c)	1.2 m	$1.2 \div 2$ = 0.6 m	$2 \times 3.142 \times 0.6$ = 3.77 m (to 3 s.f.)	3.142×0.6^2 = 1.13 m ² (to 3 s.f.)
(d)	3.999 × 2 = 8.00 cm (to 3 s.f.)	$\sqrt{50.24 + 3.142}$ = 3.999 cm = 4.00 cm (to 3 s.f.)	2 × 3.142 × 3.999 = 25.1 cm (to 3 s.f.)	50.24 cm ²
(e)	2 × 11.996 = 24.0 cm (to 3 s.f.)	$\sqrt{452.16 + 3.142}$ = 11.996 cm = 12.0 cm (to 3 s.f.)	2 × 3.142 × 11.996 = 75.4 cm (to 3 s.f.)	452.16 cm ²
(f)	2 × 14 = 28 cm	14 cm	2 × 3.142 × 14 = 88.0 cm	3.142×14^2 = 616 cm ² (to 3 s.f.)
(g)	2 × 4.2 = 8.4 cm	4.2 cm	2 × 3.142 × 4.2 = 26.4 cm (to 3 s.f.)	3.142×4.2^{2} = 55.4 cm ² (to 3 s.f.)
(h)	2 × 19.987 = 40.0 m (to 3 s.f.)	125.6 ÷ (2 × 3.142) = 19.987 m = 20.0 m (to 3 s.f.)	125.6 m	3.142×19.987^2 = 1260 m ² (to 3 s.f.)
(i)	84 mm	84 ÷ 2 = 42 mm	2 × 3.142 × 42 = 264 mm (to 3 s.f.)	3.142×42^{2} = 5540 mm ² (to 3 s.f.)
(j)	2 × 21.0057 = 42.0 cm (to 3 s.f.)	132 ÷ (2 × 3.142) = 21.0057 cm = 21.0 cm (to 3 s.f.)	132 cm	3.142×21.0057^2 = 1390 cm ² (to 3 s.f.)
(k)	2 × 12.4920 = 25.0 cm (to 3 s.f.)	78.5 ÷ (2 × 3.142) = 12.4920 cm = 12.5 cm (to 3 s.f.)	78.5 cm	3.142×12.4920^2 = 490 cm ² (to 3 s.f.)
(1)	56 cm	$56 \div 2$ = 28 cm	2 × 3.142 × 28 = 176 cm (to 3 s.f.)	3.142×28^2 = 2460 cm ² (to 3 s.f.)
(m)	2 × 38.9752 = 78.0 mm (to 3 s.f.)	244.92 ÷ (2 × 3.142) = 38.9752 mm = 39.0 mm (to 3 s.f.)	244.92 mm	3.142×38.9752^{2} = 4770 mm ² (to 3 s.f.)
(n)	60 cm	$60 \div 2$ = 30 cm	$2 \times 3.142 \times 30$ = 189 cm (to 3 s.f.)	3.142×30^2 = 2830 cm ² (to 3 s.f.)
(0)	2 × 4.9984 = 10.0 cm (to 3 s.f.)	$\sqrt{78.5 + 3.142}$ = 4.9984 cm = 5.00 cm	2 × 3.142 × 4.9984 = 31.4 cm (to 3 s.f.)	78.5 cm ²

2. (a) (i) Perimeter of figure

$$= \left[\frac{1}{2} \times 2 \times 3.142 \times \left(\frac{49}{2}\right)\right] + 49$$

= 76.979 + 49
= 125.979
= 126 cm (to 3 s.f.)

(ii) Area of figure

 $= \frac{1}{2} \times 3.142 \times \left(\frac{49}{2}\right)^2$ = 942.992 75

$$= 943 \text{ cm}^2 \text{ (to 3 s.f.)}$$

(b) (i) Perimeter of figure

$$= \left[\frac{1}{2} \times 2 \times 3.142 \times \left(\frac{21}{2}\right)\right] + 20 + 21 + 20$$

= 32.991 + 61
= 93.991
= 94.0 cm (to 3 s.f.)

(ii) Area of figure

$$= (20 \times 21) + \left[\frac{1}{2} \times 3.142 \times \left(\frac{21}{2}\right)^2\right]$$

$$= 420 + 173.202 75$$

= 593.202 75
= 593 cm² (to 3 s.f.)

(c) (i) Perimeter of figure

$$= \left[\frac{1}{2} \times 2 \times 3.142 \times \left(\frac{21}{2}\right)\right] \\ + \left[\frac{1}{2} \times 2 \times 3.142 \times \left(\frac{14}{2}\right)\right] + 21 + 14 \\ = 32.991 + 21.994 + 21 + 14 \\ = 89.985 \\ = 90.0 \text{ cm (to 3 s.f.)}$$

. .

(ii) Area of figure

$$= (14 \times 21) + \left[\frac{1}{2} \times 3.142 \times \left(\frac{21}{2}\right)^{2}\right] + \left[\frac{1}{2} \times 3.142 \times \left(\frac{14}{2}\right)^{2}\right]$$

= 294 + 173.202 75 + 76.979
= 544.181 75
= 544 cm² (to 3 s.f.)

(d) (i) Perimeter of figure

$$-\left[2 \times 3.142 \times \left(\frac{28}{28}\right)\right] + 16 + 16$$

$$= \left[2 \times 3.142 \times \left(\frac{1}{2} \right) \right] + 16 + 16$$

= 87.976 + 16 + 16
= 119.976

$$= 120 \text{ cm} (\text{to } 3 \text{ s.f.})$$

(ii) Area of figure

$$= 28 \times 16$$

 $= 448 \text{ cm}^2$

(Note: The semicircle removed from the rectangle can be replaced by the semicircle that is placed beside the rectangle. Therefore, the area of the figure is that of a rectangle of 28 cm by 16 cm.)

3. (i) Perimeter of the shaded region

$$= 40 + 40 + \left[2 \times 3.142 \times \frac{28}{2}\right]$$

= 80 + 87.976
= 167.976
= 168 cm (to 3 s.f.)

(ii) Area of the shaded region

$$= (40 \times 28) - \left[3.142 \times \left(\frac{28}{2}\right)^2 \right]$$

= 1120 - 615.832
= 504.168
= 504 cm² (to 3 s.f.)

4. (i) Perimeter of quadrant

$$= \left(\frac{1}{4} \times 2 \times 3.142 \times 10\right) + 10 + 10$$
$$= 15.71 + 20$$

- = 35.7 cm (to 3 s.f.)
- (ii) Area of quadrant

$$=\frac{1}{4} \times 3.142 \times 10^2$$

= 78.6 cm² (to 3 s.f.)
5. (a) Area of circle with radius 10 cm
= 3.142 × 10²

= 3.142×6^2 = 113.112 cm^2 Area of shaded region = 314.2 - 113.112

 $= 201 \text{ cm}^2$ (to 3 s.f.)

 $= 3.142 \times 10^{2}$

 $= 314.2 \text{ cm}^2$

Area of square

- $= 14.14 \times 14.14$
- $= 199 9396 \text{ cm}^2$

= 114.2604

 $= 114 \text{ cm}^2$ (to 3 s.f.)

(c) Area of circle with diameter 32 cm $(22)^2$

$$= 3.142 \times \left(\frac{32}{2}\right) \\= 804.352 \text{ cm}^2$$

Area of circle with diameter 20 cm

$$= 3.142 \times \left(\frac{20}{2}\right)^2$$

 $= 314.2 \text{ cm}^2$

Area of shaded region

- = 490.152
- $= 490 \text{ cm}^2$ (to 3 s.f.)
- (d) Area of square = $16 \times 16 = 256 \text{ cm}^2$ Area of circle of diameter 16 cm

$$= 3.142 \times \left(\frac{16}{2}\right)^2$$

$$= 201.088 \text{ cm}^2$$

Area of shaded region

= 256 - 201.088

$$= 54.9 \text{ cm}^2$$
 (to 3 s.f.)

Intermediate

6. (a) The base is a triangle with height 12 cm and base length 16 cm. Base area = area of triangle $=\frac{1}{2} \times 12 \times 16$ $= 96 \text{ cm}^2$ Volume of prism = base area \times height $= 96 \times 14$ $= 1344 \text{ cm}^{3}$ Total surface area of prism $= 96 + 96 + (16 \times 14) + (12 \times 14) + (14 \times 20)$ $= 864 \text{ cm}^2$ (b) The shape of the base is a cross. Base area $= (14 \times 14) - 4(5 \times 5)$ $= 96 \text{ cm}^2$ Volume of prism = base area × height $= 96 \times 3$ $= 288 \text{ cm}^{3}$ Total surface area of solid $= (2 \times 96) + 8(5 \times 3) + 4(3 \times 4)$ = 192 + 120 + 48 $= 360 \text{ cm}^2$

(c) The base is a triangle with height 8 cm and base length 6 cm.

Base area = $\frac{1}{2} \times 8 \times 6$ = 24 cm² Volume of prism = base area × height = 24 × 14 = 336 cm³ Total surface area of the solid = 24 + 24 + (10 × 14) + (14 × 8) + (6 × 14) = 48 + 140 + 112 + 84 = 384 cm² (d) The base is an inverted L-shape. Base area = $(21 \times 15) - (9 \times 7)$ = 315 - 63= 252 cm^2 Volume of prism = base area × height = 252×10 = 2520 cm^3 Total surface area of the solid = $(252 \times 2) + 2(6 \times 10) + 2(7 \times 10) + (9 \times 10)$ + $(21 \times 10) + 2(15 \times 10)$ = 504 + 120 + 140 + 90 + 210 + 300= 1364 cm^2

7. Volume of a closed cylinder = $\pi r^2 h$ Total surface area of closed cylinder = $2\pi r^2 + 2\pi r h$

	Diameter	Radius	Height	Volume	Total Surface Area
(a)	24 × 2 = 48 cm	24 cm	21 cm	$3.142 \times (24)^2 \times 21 = 38\ 000\ \text{cm}^3$ (to 3 s.f.)	$(2 \times 3.142 \times (24)^2) + (2 \times 3.142 \times 24 \times 21) = 3619.584 + 3167.136 = 6790 cm2 (to 3 s.f.)$
(b)	1.45 × 2 = 2.9 cm	1.45 cm	1.4 cm	$3.142 \times (1.45)^2 \times 1.4$ = 9.25 cm ³ (to 3 s.f.)	$(2 \times 3.142 \times (1.45)^2) + (2 \times 3.142 \times 1.45 \times 1.4) = 13.212 11 + 12.756 52 = 26.0 cm2 (to 3 s.f.)$
(c)	28 × 2 = 56 cm	0.28 m = 28 cm	45 cm	$3.142 \times (28)^2 \times 45$ = 111 000 cm ³ (to 3 s.f.)	$(2 \times 3.142 \times (28)^2) + (2 \times 3.142 \times 28 \times 45) = 4926.656 + 7917.84 = 12 800 cm2 (to 3 s.f.)$
(d)	18.2×2 = 36.4 cm	182 mm = 18.2 cm	7.5 cm	$3.142 \times (18.2)^2 \times 7.5$ = 7810 cm ³ (to 3 s.f.)	$(2 \times 3.142 \times (18.2)^{2}) + (2 \times 3.142 \times 18.2 \times 7.5) = 2081.512 \ 16 + 857.766 = 2940 \ cm^{2} \ (to \ 3 \ s.f.)$
(e)	4.998 × 2 = 10.0 cm (to 3 s.f.)	$\sqrt{(2826) + (3.142 \times 36)} = 4.998 = 5.00 \text{ cm (to 3 s.f.)}$	36 cm	2826 cm ³	$(2 \times 3.142 \times (4.998)^2) + (2 \times 3.142 \times 4.998 \times 36) = 156.97 + 1130.67 = 1290 cm2 (to 3 s.f.)$
(f)	1.118 × 2 = 2.236 cm	$\sqrt{(30.615) + (3.142 \times 7.8)}$ = 1.118 cm = 1.12 cm (to 3 s.f.)	7.8 cm	30.615 cm ³	$(2 \times 3.142 \times (1.118)^{2}) + (2 \times 3.142 \times 1.118 \times 7.8) = 7.854 52 + 54.799 = 62.7 \text{ cm}^{2} (\text{to } 3 \text{ s.f.})$
(g)	19.994 × 2 = 40.0 cm (to 3 s.f.)	$\sqrt{(8164) + (3.142 \times 6.5)}$ = 19.994 cm = 20.0 cm (to 3 s.f.)	65 mm = 6.5 cm	8164 cm ³	$(2 \times 3.142 \times (19.994)^2) + (2 \times 3.142 \times 19.994 \times 6.5) = 2512.092 + 816.6749 = 3330 cm2 (to 3 s.f.)$
(h)	5.6×2 = 11.2 cm	5.6 cm	$532 \div (3.142 \times 5.6^2) = 5.3992 \text{ cm} = 5.40 \text{ cm} (\text{to } 3 \text{ s.f.})$	532 cm ³	$(2 \times 3.142 \times (5.6)^2) + (2 \times 3.142 \times 5.6 \times 5.3992) = 197.066 24 + 190.00 = 387 cm2 (to 3 s.f.)$
(i)	2.65 × 2 = 5.3 cm	2.65 cm	20.74 ÷ (3.142 × 2.65 ²) = 0.940 cm (to 3 s.f.)	20.74 cm ³	$(2 \times 3.142 \times (2.65)^{2}) + (2 \times 3.142 \times 2.65 \times 0.940) = 44.129 \ 39 + 15.6534 = 59.8 \ cm^{2} \ (to \ 3 \ s.f.)$
(j)	15×2 = 30 cm	15 cm	$5400 \div (3.142 \times 15^{2}) = 7.6384 \text{ cm} = 7.64 \text{ cm} (\text{to } 3 \text{ s.f.})$	0.0054 m ³	$(2 \times 3.142 \times (15)^{2}) + (2 \times 3.142 \times 15 \times 7.6384) = 1413.9 + 719.996 = 2130 \text{ cm}^{2} (\text{to } 3 \text{ s.f.})$

8. (i) Volume of hall

- = volume of cuboid + volume of half-cylindrical ceiling $\left(\frac{1}{2} \times 3.142 \times \left(\frac{30}{2}\right)^2 \times 80\right)$ $= (30 \times 80 \times 10) +$ $= 24\ 000 + 28\ 278$ $= 52\ 278$ $= 52 300 \text{ cm}^3$ (to 3 s.f.) (ii) Total surface area of hall $= [2(30 \times 10) + 2(80 \times 10) + (80 \times 30)]$ + $\frac{1}{2}$ [(2 × 3.142 × 15²) + (2 × 3.142 × 15 × 80)] $= [600 + 1600 + 2400] + \frac{1}{2} [1413.9 + 7540.8]$ = 4600 + 4477.35= 9077.35 $= 9080 \text{ m}^2$ (to 3 s.f.)
- **9.** Let the breadth of the rectangle be *x* cm. Then the length of the rectangle is 2x cm. Circumference of the wire

$$= 2 \times 3.142 \times \frac{35}{2}$$

$$= 3.142 \times 35$$

= 109.97 cm

Circumference of the wire is the perimeter of the rectangle.

109.97 = 2(x + 2x)54.985 = x + 2x3x = 54.985x = 18.328 33 (to 5 d.p.) Area of the rectangle $= 18.328 \ 33 \times 2(18.328 \ 33)$ $= 672 \text{ cm}^2$ (to 3 s.f.)

10. (a) Perimeter of quadrant = r + r + arc length PQ 50 = r + r + arc length PQ

Arc length
$$PQ = 50 - r - r$$

 $= (50 - 2r) \text{ cm}$
 $\frac{1}{4} \times 2 \times \frac{22}{7} \times r = 50 - 2r$
 $\frac{11}{7} \times r = 50 - 2r$
 $\frac{11}{7} \times r + 2r = 50$
 $3\frac{4}{7}r = 50$
 $r = 50 \div 3\frac{4}{7}$
 $= 14 \text{ cm}$
Area of quadrant $= \frac{1}{4} \times \frac{22}{7} \times 14^2 = 154 \text{ cm}$

(b) Circumference of wheel

$$= 2 \times 3.142 \times \left(\frac{25}{2}\right)$$

= 78.55 cm

Number of complete revolutions

$$= \frac{200}{78.55 \div 100} \approx 254.61$$

= 254 revolutions (to 3 s.f.)

Note: The answer cannot be 255 as the wheel has made 254 revolutions but has not yet completed the 255th revolution.

(c) Distance moved by the tip of the hand for 26 minutes

$$= \frac{26}{60} \times 2 \times 3.142 \times 8$$

= 21.8 cm (to 1 d.p.)

(d) Distance travelled in 5 minutes

$$= 90 \times \frac{5}{60}$$

Circumference of car wheel

- $= 2 \times 3.142 \times 0.00035$
- = 0.002 199 4 km
- Number of revolutions made
- $= 7.5 \div 0.002 199 4$
- = 3410 (to 3 s.f.)
- (e) Distance covered when the athlete runs round the track once
 - $=\frac{4}{8}$ = 0.5 km= 500 m Let the radius of the track be r m.

Circumference of the track = $2 \times 3.142 \times r$

$$500 = 2 \times 3.142 \times$$

$$\therefore r = \frac{500}{2 \times 3.142}$$

- 11. (a) Length of arc *PR*
 - $=\frac{1}{4} \times 2 \times 3.142 \times 5$ = 7.855 cm Perimeter of the shaded region = 5.66 + 7.855 + 3 + (4 + 5) + 4= 29.515

$$= 29.5 \text{ cm} (\text{to } 3 \text{ s.f.})$$

OXFORD

(b) Area of rectangle $= 9 \times 8$ $= 72 \text{ cm}^2$ Area of $\triangle APQ$ $=\frac{1}{2} \times 4 \times 4$ $= 8 \text{ cm}^2$ Area of quadrant BPR $=\frac{1}{4} \times 3.142 \times 5^{2}$ $= 19.6375 \text{ cm}^2$ Area of shaded region = 72 - 8 - 19.6375= 44.3625 $= 44.4 \text{ cm}^2$ (to 3 s.f.) 12. Area of rectangle ABCD $= 60 \times 28$ $= 1680 \text{ cm}^2$ Area of semicircle BXC $=\frac{1}{2} \times 3.142 \times \left(\frac{28}{2}\right)$ $= 307.916 \text{ cm}^2$ Area of $\triangle ADX$ $=\frac{1}{2} \times 28 \times (60 - 14)$ $= 644 \text{ cm}^2$ Area of the shaded region = 1680 - 307.916 - 644= 728.084 $= 728 \text{ cm}^2$ (to 3 s.f.) 13. (a) Circumference of the pond $= 2 \times 3.142 \times 3.2$ = 20.1088 m Circumference of the pond with concrete path $= 2 \times 3.142 \times (3.2 + 1.4)$ $= 2 \times 3.142 \times 4.6$ = 28.9064 m Perimeter of the shaded region = 28.9064 + 20.1088= 49.0152= 49.0 m (to 3 s.f.) (b) Area of the pond $= 3.142 \times 3.2^{2}$ $= 32.174 \ 08 \ m^2$ Area of the pond with concrete path $= 3.142 \times 4.6^{2}$ $= 66.484 \ 72 \ m^2$ Area of the shaded region = 66.48472 - 32.17408= 34.31064 $= 34.3 \text{ m}^2$ (to 3 s.f.) \therefore The area of the concrete path is 34.3 m².

14. (a) Area of shaded region A = area of circle with radius 5 cm $= 3.142 \times 5^{2}$ = 78.55 $= 78.6 \text{ cm}^2$ (to 3 s.f.) (b) Area of circle with radius 10 cm $= 3.142 \times 10^{2}$ $= 314.2 \text{ cm}^2$ Area of circle with radius 8 cm $= 3.142 \times 8^{2}$ $= 201.088 \text{ cm}^2$ Area of shaded region B = 314.2 - 201.088= 113.112 $= 113 \text{ cm}^2$ (to 3 s.f.) **15.** (a) $1.25 \text{ m} = 1.25 \times 100$ = 125 cmThe largest possible radius is 125.4 cm or 1.254 m. (b) Smallest possible radius = 124.5 cm = 1.245 mSmallest possible area $= 3.142 \times (1.245)^2$ = 4.870 178 55 $= 4.870 \text{ m}^2$ (to 4 s.f.) 16. Area of quadrant $=\frac{1}{4} \times 3.142 \times 21^{2}$ $= 346.4055 \text{ cm}^2$ Area of $\triangle OCA$ $=\frac{1}{2} \times 13 \times 21$ $= 136 \frac{1}{2} \text{ cm}^2$ Area of shaded region $= 346.4055 - 136 \frac{1}{2}$ = 209.9055 $= 210 \text{ cm}^2$ (to 3 s.f.) 17. (a) Area of quadrant $=\frac{1}{4} \times 3.142 \times 40^2$ $= 1256.8 \text{ cm}^2$ Area of triangle $=\frac{1}{2} \times 40 \times 40$ $= 800 \text{ cm}^2$ Area of shaded region = 1256.8 - 800= 456.8 $= 457 \text{ cm}^2$ (to 3 s.f.)

(b) Area of square = 24×24 = 576 cm^2 Area of a circle with radius 12 cm = 3.142×12^2 = 452.448 cm^2 Area of shaded region

$$= 576 - 452.448$$

$$= 124 \text{ cm}^2$$
 (to 3 s.f.)

(c) Area of semicircle with radius 5 cm

$$=\frac{1}{2} \times 3.142 \times 5^{2}$$

= 39.275 cm²

Area of triangle

$$=\frac{1}{1} \times 6 \times 8$$

$$= 24 \text{ cm}^2$$

Area of shaded region

$$= 39.275 - 24$$

$$= 15.3 \text{ cm}^2$$
 (to 3 s.f.)

(d) Area of trapezium

$$=\frac{1}{2}(23+33) \times 19$$

$$= 532 \text{ cm}^2$$

Area of triangle

$$=\frac{1}{2}\times 33\times 19$$

$$= 313.5 \text{ cm}^2$$

Area of shaded region

$$= 218.5 \text{ cm}^2$$

(e) Area of semicircle with diameter 5 cm

$$= \frac{1}{2} \times 3.142 \times \left(\frac{5}{2}\right)^{2}$$

= 9.818 75 cm²

Area of semicircle with diameter 2 cm

$$= \frac{1}{2} \times 3.142 \times \left(\frac{2}{2}\right)$$
$$= 1.571 \text{ cm}^2$$

Area of semicircle with diameter 3 cm

$$= \frac{1}{2} \times 3.142 \times \left(\frac{3}{2}\right)$$
$$= 3.53475 \text{ cm}^2$$

Area of shaded region

= 9.818 75 - 1.571 + 3.534 75 = 11.7825

$$= 11.8 \text{ cm}^2$$
 (to 3 s.f.)

(f) Area of trapezium $=\frac{1}{2} \times (19 + 29) \times 21$ $= 504 \text{ cm}^2$ Area of circle with diameter 21 cm $\frac{21}{2}$ = 3.142 × $= 346.4055 \text{ cm}^2$ Area of shaded region = 504 - 346.4055 = 157.5945 $= 158 \text{ cm}^2$ (to 3 s.f.) (g) Total shaded area = area of semicircle with radius 12 cm + area of rectangle 23 cm by 12 cm + area of rectangle 17 cm by 12 cm + area of triangle $\times 3.142 \times 12^{2}$ $+(12 \times 23) + (17 \times 12)$

= 718.224

$$= 718 \text{ cm}^2 \text{ (to 3 s.f.)}$$

(h) Place the quadrants and fill the gap. The figure is then changed into a rectangle with dimensions 20 cm by 18 cm.

Area of shaded region

- = area of rectangle with dimension 20 cm by
- 18 cm
- $= 20 \times 18$

$$= 360 \text{ cm}^2$$

(i)
Area of region A

$$= \left(\frac{1}{4} \times 3.142 \times 7^{2}\right) - \left(\frac{1}{2} \times 7 \times 7\right)$$

$$= 38.4895 - 24.5$$

$$= 13.9895 \text{ cm}^{2}$$
Area of shaded region

$$= 2 \times 13.9895$$

$$= 27.979$$

$$= 28.0 \text{ cm}^{2} (\text{ to } 3 \text{ s.f.})$$
18. (a) Perimeter of semicircle

$$= \left(\frac{1}{2} \times 2 \times 3.142 \times \frac{2x}{2}\right) + 2x$$

$$= 3.142x + 2x$$

$$= 5.142x \text{ cm}$$
Perimeter of rectangle

$$= 2[(x + 11) + (x - 3)]$$

$$= 2(2x + 8) \text{ cm}$$

$$5.142x = 2(2x + 8)$$

$$5.142x = 4x + 16$$

$$5.142x - 4x = 16$$

$$1.142x = 16$$

$$x = 14.0105$$

$$= 14.0 (\text{ to } 3 \text{ s.f.})$$
(b) Area of semicircle

$$= \frac{1}{2} \times 3.142 \times \left(\frac{2 \times 14.01}{2}\right)^{2}$$

$$= 308.356 \text{ 037 1 cm}^{2}$$
Length of rectangle = 14.01 - 3

$$= 11.01 \text{ cm}$$
Area of rectangle = 14.01 - 3

$$= 11.01 \text{ cm}$$
Area of rectangle = 14.01 - 3

$$= 11.01 \text{ cm}$$
Area of rectangle = 25.01 × 11.01

$$= 275.3601 \text{ cm}^{2}$$
Difference in area = 308.356 037 1 - 275.3601

$$= 32.9959$$

$$= 33.0 \text{ cm}^{2} (\text{ to } 3 \text{ s.f.})$$

19. (a) Let the radius of the semicircle be r cm. Area of semicircle

 $=\frac{1}{2} \times 3.142 \times r^2$ $= 1.571r^2$ cm² Area of triangle AFE $=\frac{1}{2} \times 2r \times r$ $= r^2 \mathrm{cm}^2$ Area of shaded region = $1.571r^2 - r^2$ $73 = 1.571r^2 - r^2$ $0.571r^2 = 73$ $r^2 = 127.845\ 884\ 4$ r = 11.3 (to 3 s.f.) Length of $AE = 2 \times 11.306\ 895$ = 22.6138 = 22.6 cm (to 3 s.f.)(b) Area of trapezium ABDE $= \frac{1}{2} \times (48 + 22.6138) \times 20$ = 706.138 $= 706 \text{ cm}^2$ (to 3 s.f.) **20.** (a) (i) Base area = $(8 \times 3) + \frac{1}{2}(3+6) \times 4$ = 24 + 18 $= 42 \text{ cm}^2$ Volume of prism = base area \times height $= 42 \times 6$ $= 252 \text{ cm}^3$ (ii) Total surface area = area of all the surfaces $= 42 + 42 + 2(6 \times 3) + (5 \times 6) + (6 \times 2)$ $+(6 \times 7) + (8 \times 6)$ = 84 + 36 + 30 + 12 + 42 + 48 $= 252 \text{ cm}^2$ **(b)** (i) Base area = $\frac{1}{2}(9+6) \times 4$ $= 30 \text{ cm}^2$ Volume of prism = 30×8 $= 240 \text{ cm}^3$ (ii) Total surface area $= 30 + 30 + (8 \times 9) + (6 \times 8) + (8 \times 5)$ $+(4 \times 8)$ = 60 + 72 + 48 + 40 + 32 $= 252 \text{ cm}^2$

_62 _

21. (i) Area of face ABQP

$$=\frac{1}{2}(7+13) \times 8$$

$$= 80 \text{ cm}^{2}$$

- (ii) Base area = area of face $ABOP = 80 \text{ cm}^2$
 - Volume of solid = base area × height
 - $= 80 \times 40$
 - $= 3200 \text{ cm}^{3}$
- (iii) Total surface area
 - = area of all the faces
 - $= 2(80) + (13 \times 40) + (7 \times 40) + (8 \times 40)$ $+(10 \times 40)$
 - = 160 + 520 + 280 + 320 + 400
 - $= 1680 \text{ cm}^2$
- 22. A drawing of the cross-section of the swimming pool is helpful in solving the problem.

Area of cross-section

$$= \frac{1}{2} \times (1.2 + 3) \times 40 + 10 \times 1.2$$
$$= 96 \text{ m}^2$$

Volume of water in the pool when it is full

- = area of cross-section \times width
- $= 96 \times 32$
- $= 3072 \text{ cm}^3$
- 23. (i) Let the radius of the base of the cylinder be r cm. Circumference of base of cylinder = $2\pi r$

$$88 = 2 \times 3.142 \times$$

r = 14.004

Total surface area $= 2\pi r^2 + (\text{circumference} \times \text{height})$ $= (2 \times 3.142 \times 14.004^2) + (88 \times 10)$ = 1232.367909 + 880= 2112.367 909 $= 2110 \text{ cm}^2$ (to 3 s.f.) (ii) Volume of cylinder $=\pi r^2 h$ $= 3.142 \times 14.004^2 \times 10$

$$= 6160 \text{ cm}^3$$
 (to 3 s.f.)

24. Volume of water in container P

$$= 3.142 \times \left(\frac{3}{2}\right) \times 24$$
$$= 169.668 \text{ cm}^3$$

Let the height of water in container Q be h cm. Volume of water in container $Q = 169.668 \text{ cm}^3$ Base area of container Q

$$= 3.142 \times \left(\frac{8}{2}\right)^{2}$$

= 50.272 cm²
50.272 × h = 169.668
 $h = 3\frac{3}{8}$

The height of water in container Q is $3\frac{3}{8}$ cm.

25. Volume of water in the cylinder when it is filled to the brim

$$= 3.142 \times \left(\frac{10}{2}\right)^2 \times 30$$
$$= 2356.5 \text{ cm}^3$$

Volume of water in the tank before the ball bearings are added

$$\frac{3}{8} \times 2356.5$$

 $= 883.6875 \text{ cm}^3$

Volume of water and ball bearings

$$=\frac{1}{2} \times 2356.5$$

$$= 1178.25 \text{ cm}^3$$

Volume of 8 ball bearings

- = 1178.25 883.6875
- $= 294.5625 \text{ cm}^3$
- Volume of each ball bearing
- $= 294.5625 \div 8$
- = 36.820
- $= 36.8 \text{ cm}^3$ (to 3 s.f.)
- 26. (i) Total surface area of an open cylinder $=\pi r^2 + 2\pi rh$ $= (3.142 \times 14^2) + (2 \times 3.142 \times 14 \times 30)$
 - = 615.832 + 2639.28

$$= 3260 \text{ cm}^2 \text{ (to 3 s.f.)}$$

- (ii) $1 \text{ m}^2 = 1 \times 100 \times 100 = 10\ 000\ \text{cm}^2$ 10 000 cm² costs 750 paisas 3255.112 cm² costs 244.1334 paisas = 244 paisas (to the nearest paisa)
- **27.** (a) Volume of metal cube = $(46)^3$
 - $= 97 336 \text{ cm}^3$

Volume of each cylindrical rod
-
$$3 142 \times 2^2 \times 3 2$$

$$= 3.142 \times 2^{2} \times 3$$

= 40.2176 cm³

$$= 40.2176$$
 o

Maximum number of rods that can be obtained

 $=\frac{97\ 336}{40.2176}$

≈ 2420

(b) Volume of the metal disc

 $= 3.142 \times 8^2 \times 3$

 $= 603.264 \text{ cm}^3$

Volume of each bar

- $= 3.142 \times 1^2 \times 4.2$
- $= 13.1964 \text{ cm}^3$

Maximum number of bars that can be obtained

- $= \frac{603.264}{1000}$
- 13.1964
- = 45.7143

 ≈ 45

(c) Volume of butter

- $= 3.142 \times 3^2 \times 10$
- $= 282.78 \text{ cm}^3$

Volume of each circular disc

 $= 3.142 \times (1.5)^2 \times 0.8$

 $= 5.6556 \text{ cm}^3$

Maximum number of discs formed

- $=\frac{282.78}{5.6556}$
- = 50

28. Volume of the metal

 $= 12 \times 18 \times 10$

 $= 2160 \text{ cm}^3$

Volume of each cylindrical plate

- $= 2160 \div 45$
- $= 48 \text{ cm}^3$

Let the thickness of each plate be t cm.

- $48 = 3.142 \times 1.2^2 \times t$
- t = 10.61 cm (to 2 d.p.)
- ... The thickness of each plate is 10.61 cm.
- **29.** (i) Internal curved surface area
 - $= 2\pi rh$
 - $= 2 \times 3.142 \times 9 \times (12 \times 100)$
 - $= 67 \ 867.2 \ \mathrm{cm}^2$

```
= 6.79 \text{ m}^2 (to 3 s.f.)
```

(ii) External radius of the pipe = 9 + 0.5

= 9.5 cm

Volume of metal = $[3.142 \times (9.5)^2 \times 1200] - (3.142 \times 9^2 \times 1200)$

- $= [3.142 \times (9.5)] \times 1200] = (3.142 \times 1200] (9.5^2 9^2)$
- $= [5.142 \times 1200](9.3)$
- = 34 876.2

 $= 34 900 \text{ cm}^3 \text{ (to } 3 \text{ s.f.)}$

- **30.** (i) Convert 385 litres to cm^3 . $385 \text{ litres} = 385 \times 1000 = 385 000 \text{ cm}^3$ (ii) Base area = $3.142 \times (70)^2$ $= 15 395.8 \text{ cm}^2$ Volume of water in tank = base area \times height *h* $385\ 000 = 15\ 395.8 \times h$ h = 25.007= 25.0 cm (to 3 s.f.) (iii) Total surface area of the liquid in contact with the cylindrical tank $= (3.142 \times 70^{2}) + (2 \times 3.142 \times 70 \times 25.007)$ = 15 395.8 + 11 000.08 = 26.395.88 $= 26 400 \text{ cm}^2$ (to 3 s.f.) 31. (a) Since water is discharged through the pipe at a rate of 28 m/min, the volume of water discharged in 1 minute is the volume of water that fills the pipe to a length of 28 m. In 1 minute, volume of water discharged = volume of pipe of length 28 m $=\pi r^2 h$ $= 3.142 \times (4.2 \div 100)^2 \times 28$ $= 0.155 \ 189 \ 664 \ cm^3$ Volume of water in rectangular tank $= 4 \times 2.5 \times 2.4$ $= 24 \text{ m}^3$ Amount of time needed to fill the tank completely 24 0.155 189 664 = 154.6495 minutes = 2 hours and 35 minutes (to the nearest minute) (b) Since water is discharged through the pipe at a rate of 3.4 m/s, the volume of water discharged in 1 second is the volume of water that fills the pipe to a length of 3.4 m. In 1 second, volume of water discharged = volume of pipe of length 3.4 m $=\pi r^2 h$ $= 3.142 \times [(5.2 \div 2) \div 100]^2 \times 3.4$ $= 0.007 221 572 8 m^3$ Volume of cylindrical tank $= 3.142 \times (2.3)^2 \times 1.6$
 - $= 26.593 888 8 \text{ m}^3$

Amount of time needed to fill the tank

 $= 26.593\ 888\ 8\div 0.007\ 221\ 572\ 8$

= 3682.561 893 seconds

= 61 minutes (to the nearest minute)

(c) Base area of trapezium

 $=\frac{1}{2} \times (7+5) \times 2.5$ $= 15 \text{ m}^2$ In 1 hour, volume of water discharged $= 15 \times (12 \times 1000)$ $= 180\ 000\ m^3$ In 1 second, volume of water discharged $= (180\ 000 \div 3600)$ $= 50 \text{ m}^3$ In 5 seconds, the volume of water discharged $= 5 \times 50 = 250 \text{ m}^3$

- (d) Since water is discharged through the pipe at a rate of 18 km/h, the volume of water discharged in 1 hour is the volume of water that fills the pipe to a length of 18 km = 18 000 m.
 - In 1 hour, volume of water discharged
 - = volume of pipe of length 18 km
 - $= 3.142 \times (4 \div 100)^2 \times 18\ 000$
 - $= 90.4896 \text{ m}^3$
 - In $1\frac{2}{3}$ hours, the volume of water discharged
 - $=1\frac{2}{2} \times 90.4896$
 - $= 150.816 \text{ m}^3$
 - Volume of swimming pool = $50 \times 25 \times \text{height } h$ $150.816 = 1250 \times h$

```
\therefore h = 0.120\ 652\ 8\ m
```

```
= 12.1 \text{ cm} (to 3 s.f.)
```

- **32.** (a) Convert 10.5 kg to g.
 - $10.5 \text{ kg} = 10.5 \times 1000 = 10500 \text{ g}$ Volume of metal
 - $=\frac{10500}{3.5}$
 - $= 3000 \text{ cm}^3$ $3000 = 4 \times 3 \times x$
 - x = 250
 - (**b**) Convert 22.44 kg to g. $22.44 \text{ kg} = 22.44 \times 1000 = 22440 \text{ g}$ Volume of metal
 - $=\frac{22\,440}{13.6}$

 - $= 1650 \text{ cm}^3$

Let the radius of the glass cylinder be x cm. $1650 = 3.142 \times x^2 \times 21$ $x^2 = 25.0068$

x = 5.00068

Diameter of the glass cylinder

$$= 2 \times 5.000\ 68$$

= 10.0 cm (to 3 s.f.)

33. (i) Base area = $\frac{1}{2} \times (12 + 8) \times 7$ $= 70 \text{ cm}^2$ Volume of block = base area \times length $= 70 \times 28$ $= 1960 \text{ cm}^{3}$ (ii) Total surface area of block $= 70 + 70 + (12 \times 28) + (7 \times 28) + (28 \times 8.06)$ $+(8 \times 28)$ = 70 + 70 + 336 + 196 + 225.68 + 224 $= 1121.68 \text{ cm}^2$ 34. (i) Total surface area of the solid block $= (2 \times 3.142 \times 14^2)$ $+(2 \times 3.142 \times 14 \times [1.2 \times 100])$ = 1231.664 + 10557.12= 11788.784 $= 11 800 \text{ cm}^2$ (to 3 s.f.) (ii) Volume of block $= 3.142 \times (14)^2 \times (1.2 \times 100)$ = 73 899.84 $= 73 900 \text{ cm}^3$ (to 3 s.f.) 35. (i) Volume of box $= 48 \times 36 \times 15$ $= 25 920 \text{ cm}^3$ Number of items in box $= (48 \div 7) \times (36 \div 7) \times (15 \div 7)$ $\approx 6 \times 5 \times 2$ = 60Total volume of items = 60×7^3 $= 20580 \text{ cm}^3$ Volume of sawdust = 25920 - 20580 $= 5340 \text{ cm}^{3}$ (ii) Mass of sawdust = density × volume $= 0.75 \times 5340$ = 4005 g36. (i) Total surface area of the cuboid $= 2[(30 \times 25) + (30 \times 15) + (25 \times 15)]$ = 2[750 + 450 + 375] $= 3150 \text{ cm}^2$ (ii) Volume of cuboid $= 30 \times 25 \times 15$ $= 11 250 \text{ cm}^3$ Volume of each coin $= 3.142 \times 1.5^2 \times (2.4 \div 10)$

 $= 1.696 \ 68 \ cm^3$

Number of coins that can be made

= 11 250 ÷ 1.696 68

≈ 6630

(Note: The answer is not 6631 as the number of coins is 6630.6, which is less than 6631.)

(iii) Total volume of coins

- = 6630 × 1.696 68
- $= 11 248.9884 \text{ cm}^3$

Volume of molten metal left behind

- = 11 250 11 248.9884
- = 1.0116
- $= 1.01 \text{ cm}^3$ (to 3 s.f.)
- **37.** (i) Convert 3780 litres to m^3 .

3780 $l = (3780 \times 1000) \div 100 \div 100 \div 100$ = 3.78 m³

Let the depth of the liquid in the tank be d m.

 $3.78 = 4.2 \times 1.8 \times d$

$$d = 0.5$$

The depth of the liquid in the tank is 0.5 m or 50 cm.

(ii) Volume of increase in liquid level

 $= 420 \times 180 \times (1.6)$

 $= 120 960 \text{ cm}^3$

Volume of one solid brick

- 380
- = 318.315 789 5
- $= 318 \text{ cm}^3 \text{ (to 3 s.f.)}$
- 38. (i) Volume of closed container
 - = volume of cuboid + volume of half cylinder

=
$$(28 \times 60 \times 40) + \left(\frac{1}{2} \times 3.142 \times \left(\frac{28}{2}\right)^2 \times 60\right)$$

- = 67 200 + 18 474.96
- $= 85 674.96 \text{ cm}^3$
- = (85 674.96 ÷ 1000) litres
- = 85.7 litres (to 3 s.f.)
- (ii) Total surface area of the container
 - = surface area of the cuboid (without the top surface)

+ surface area of the half cylinder

$$= 2 \times \left[28 \times 40 + \frac{1}{2} \times 3.142 \times 14^{2} \right]$$

+ 2(60 × 40) + (28 × 60)
+ $\left(\frac{1}{2} \times 2 \times 3.142 \times 14 \times 60 \right)$

= 2[1120 + 307.916] + 4800 + 1680 + 2639.28

= 2855.832 + 4800 + 1680 + 2639.28

$$= 11 975.112 \text{ cm}^2$$

$$= 1.197 511 2 \text{ m}^2$$

$$= 1.20 \text{ m}^2 \text{ (to 3 s.f.)}$$

39. Volume of two cylindrical discs

$$= 2 \left[\pi \times \left(\frac{120}{2} \right)^2 \times 12 \right]$$

 $= 86 \ 400 \pi \ \mathrm{cm}^3$

Volume of the connecting cylinder of diameter 40 cm

$$= \pi \times \left(\frac{40}{2}\right)^2 \times (94 - 12 - 12)$$

 $= 28\ 000\pi\ {\rm cm}^3$

Total volume of drum (before the cylinder of diameter of 16 cm is removed)

$$= (86\ 400\ +\ 28\ 000)\pi$$

 $= 114 \ 400\pi \ \mathrm{cm}^3$

Volume of cylinder, of diameter 16 cm, removed from the drum

$$=\pi \times \left(\frac{16}{2}\right)^2 \times 94$$

 $= 6016\pi \text{ cm}^3$

- Volume of wood used to make the drum
- $=(114\ 400-6016)\pi$
- $= 108 \ 384\pi \ cm^3$
- $= 108\ 000\pi\ \mathrm{cm}^3$ (to 3 s.f.)
- 40. (i) Volume of cylindrical container
 - $= 3.142 \times (14)^2 \times 40$
 - = 24 633.28
 - $= 24 \ 600 \ \mathrm{cm}^3$ (to 3 s.f.)
 - (ii) Surface area of one cylindrical container

 $= (2 \times 3.142 \times 14 \times 40) + (2 \times 3.142 \times 14^{2})$ = 4750.704 cm²

Surface area of 450 cylinders

- $=450 \times 4750.704$
- $= 2 \ 137 \ 816.8 \ cm^2$
- 4200 cm² surface requires 0.24 litres of paint.

2 137 816.8 cm² requires 122.160 96 litres of paint. 123 litres of paint must be purchased to paint all 450 containers.

Cost to paint the containers

41. (i) Volume of the rectangular block

 $= 12 \times 18 \times 10$ = 2160 cm³

Volume of cylinder removed from the block

$$= 3.142 \times \left(\frac{7}{2}\right)^2 \times 18$$

= 692.811 cm³ Volume of remaining solid

= 2160 - 692.811

$$= 1470 \text{ cm}^3$$
 (to 3 s.f.)

(ii) Total surface area of the remaining solid

$$= 2 \left[12 \times 10 - \left(3.142 \times \left(\frac{7}{2} \right)^2 \right) \right] \\ + 2 \left[(18 \times 12) + (18 \times 10) \right] \\ = 2 \left[120 - 38.4895 \right] + 2 \left[396 \right] \\ = 955.021 \\ = 955 \text{ cm}^2 (\text{to } 3 \text{ s.f.})$$

Advanced

42. Let the radius of each circle be *r* cm. Area of each circle = πr^2

Area of each c $36\pi = \pi r^2$ $r^2 = 36$

:
$$r = \sqrt{36} = 6$$

Length of CD = 6 + 6

$$= 12 \text{ cm}$$

43. (i) Let the radius of cylinder *A* be *r* cm and the height be *h* cm.

Volume of cylinder A

$$=\pi r^2 h$$

 $= 343 \text{ cm}^3$

Then the radius of cylinder *B* will be $\frac{1}{3}r$ cm and the height will be *h* cm. Volume of cylinder *B*

$$= \pi \times \left(\frac{1}{3}r\right)^2 \times h$$
$$= \pi \times \frac{1}{9} \times r^2 \times h$$
$$= \frac{1}{9} \times \pi r^2 h$$
$$= \frac{1}{9} \times 343$$
$$= 38.111$$
$$= 38.1 \text{ cm}^3 \text{ (to 3 s.f.)}$$

(ii) Number of cubes formed

$$= \frac{38.111}{2^3}$$

= 4.763...

The maximum number of cubes formed is 4.

- **44.** Total thickness of the paper towel after it is being rolled = $(1 \div 10) \times 90$
 - = 9 cm

Total radius of the paper towel and roll

$$= 9 + 2.5$$

= 11.5 cm

Base area of the paper towel, in the form of a cylinder

$$=\frac{22}{7} \times [(11.5)^2 - (2.5)^2]$$

 $= 396 \text{ cm}^2$

- Volume of paper towel
- = base area \times width of towel
- = 396 × 14

= 5544

 $= 5540 \text{ cm}^3 \text{ (to 3 s.f.)}$

5. (a)
$$A = \pi \left(\frac{5r+5kr}{2}\right)^2$$

= $\pi \left[\frac{5r(1+k)}{2}\right]^2$
= $\frac{25}{4}\pi r^2(1+k)^2$

(b) When k = 3,

Area of large circle = $\frac{25}{4} \pi r^2 (4)^2$ = $100\pi r^2 \text{ cm}^2$

Area of shaded region

$$100 \tilde{r}^2$$
 1 $(5kr)^2$ 1 $(5r)^2$

$$= \frac{1}{2} + \frac{1}{2}\pi\left(\frac{1}{2}\right) - \frac{1}{2}\pi\left(\frac{1}{2}\right)$$
$$= 50\pi r^{2} + \frac{1}{2}\pi\left(\frac{225r^{2}}{4}\right) - \frac{1}{2}\pi\left(\frac{25r^{2}}{4}\right)$$
$$= 50\pi r^{2} + \frac{225^{2}r^{2}}{8} - \frac{25^{2}r^{2}}{8}$$

$$=75\pi r^2$$
 cm²

Area of unshaded region

$$= \frac{100^{\circ} r^{2}}{2} + \frac{1}{2} \pi \left(\frac{5r}{2}\right)^{2} - \frac{1}{2} \pi \left(\frac{5kr}{2}\right)^{2}$$
$$= 50\pi r^{2} + \frac{25^{\circ} r^{2}}{8} - \frac{225^{\circ} r^{2}}{8}$$
$$= 50\pi r^{2} - 25\pi r^{2}$$

$$= 25\pi r^2 \text{ cm}^2$$

Difference in area = $75\pi r^2 - 25\pi r^2$
= $50\pi r^2 \text{ cm}^2$

46. Surface area of cross-section

 $= \pi \left(\frac{1.3}{2}\right)^2 + \frac{1}{2} \times 2.6 \times 2.25 - \pi \left(\frac{0.5}{2}\right)^2$ = 0.4225\pi + 2.925 - 0.0625\pi = (0.36\pi + 2.925) cm² Volume of platinum = 0.2(0.36\pi + 2.925) = (0.072\pi + 0.585) cm³ Price of platinum used = 21.5(0.072\pi + 0.585) \times PKR 43.48 = PKR 758.3210 (to 4 d.p.) Total value of pendant = PKR 4200 + PKR 758.3210 = PKR 4958.32 (to the nearest paisa)

47. Convert 100 litres to cm^3 .

 $100 \ l = 100 \times 1000 = 100 \ 000 \ \mathrm{cm}^3$

Volume of tank = cross-sectional area × height

Height = volume of tank ÷ cross-sectional area

$$= 100\ 000 \div \pi(30)^2$$

= 35.4 cm (to 3 s.f.)

Chapter 13 Averages of Statistical Data

Basic

- (a) The 4th day had the greatest number of employees report sick. 35 workers reported sick.
 - (**b**) The 10th day had the least number of employees report sick. 13 workers reported sick.
 - (c) The number of employees who reported sick was more than 30 on the 4th and 8th day.
- 3.

- 5. (a) Total number of cars
 - = 60 + 56 + 86 + 150 + 60 + 105 + 60 + 48= 625
 - (b) Since the class intervals are unequal, the histogram is to be drawn using either height of rectangle or frequency density.

Class interval	Class width		Frequency	Rectangle's height
5 - 24	20	$2 \times standard$	60	$60 \div 2 = 30$
25 - 59	35	$3.5 \times \text{standard}$	56	56 ÷ 3.5 = 16
60 - 79	20	$2 \times standard$	86	86 ÷ 3 = 43
80 - 104	25	$2.5 \times \text{standard}$	150	$150 \div 2.5 = 60$
105 – 114	10	$1 \times standard$	60	60 ÷ 1 = 22
115 – 129	15	$1.5 \times standard$	105	$105 \div 1.5 = 70$
130 – 149	20	$2 \times standard$	60	$60 \div 2 = 30$
150 - 189	40	$4 \times \text{standard}$	48	$48 \div 4 = 12$

Intermediate

6.

(i)	Age of patient, x years	Frequency
	$10 \le x < 20$	85
	$20 \le x < 30$	117
	$30 \le x < 40$	38
	$40 \le x < 50$	24
	$50 \le x < 60$	18
	$60 \le x < 70$	16
	Total frequency	300

(ii) Percentage of patients who are at least 50 years old

$$= \frac{18 + 16}{300} \times 100\%$$
$$= 11.3\%$$
(to 3 s.f.)

(iii) No. The actual ages of the patients in the interval $20 \le x < 30$ are not known, so it is incorrect for Sarah to assume that all the patients in this interval are

(ii) No, the most number of cases occur in the interval $70 \le n < 80$, but it is not correct to take the mid-value of this interval.

Age of crew, x years	Frequency	Frequency density
$25 \le x < 30$	2	0.4
$30 \le x < 35$	4	0.8
$35 \le x < 45$	17	1.7
$45 \le x < 50$	8	1.6
$50 \le x < 55$	6	1.2
$55 \le x < 60$	3	0.6

(ii) Number of crew = 0.85×40

$$\therefore p = 35$$

10. (i) Mean mass
$$\approx \frac{32 \times 20 + 38 \times 35 + 64 \times 45}{435 \times 55 + 22 \times 65 + 9 \times 85}{200}$$

= 34

(ii) Probability that the steel bar requires another

transportation vehicle =
$$\frac{9}{200}$$

$$=\frac{150+44+225+\ldots+77+55+136}{20}$$

= PKR 70.40

11.

(b)	Amount of medical claims, PKR <i>m</i>	Frequency
	$0 \le m < 50$	8
	$50 \le m < 100$	7
	$100 \le m < 150$	3
	$150 \le m < 200$	1
	$200 \le m < 250$	1
	Total frequency	20

(ii) Estimate for the mean amount of medical claims

$$= \frac{8 \times 25 + 7 \times 75 + 3 \times 125}{+ 1 \times 175 + 1 \times 225}$$

- = PKR 75
- (d) There is a difference of PKR 4.60 in the answers in
 (a) and (c)(ii). The mean amount calculated in (a) is the exact value as it is based on the individual values, but the mean amount calculated in (c)(ii) is an estimate as the mid-values of each interval are used.
- 12. Total number of vehicles along Section A = 50The median average speed along Section A lies in the interval $60 \le v < 70$.
 - Total number of vehicles along Section B = 49

The median average speed along Section *B* lies in the interval $70 \le v < 80$.

As the actual data in these intervals is not known, it is incorrect for Ethan to obtain the median average speed

along Section A by taking $\frac{60 + 70}{2} = 65$ km/h or to

obtain the median average speed along Section B by

taking
$$\frac{70 + 80}{2} = 75$$
 km/h.

Chapter 14 Probability

Basic

2. (a) (i) Probability that the customer wins PKR 88 cash

$$=\frac{1}{8}$$

(ii) Probability that the customer wins a PKR 10 shopping

voucher = $\frac{3}{8}$

- (iii) Probability that the customer wins a packet of dried scallops = 0
- (b) A pair of movie tickets and a can of abalone
- 3. (i) Angle corresponding to the sector representing beans = $360^{\circ} - 150^{\circ} - 90^{\circ} - 50^{\circ}$ = 70°

Probability that the student prefers beans = $\frac{70^{\circ}}{360^{\circ}}$

3

 $=\frac{3}{13}$

(ii) Probability that the student prefers broccoli or carrots

$$= \frac{90^{\circ} + 50}{360^{\circ}}$$
$$= \frac{140^{\circ}}{360^{\circ}}$$
$$= \frac{7}{18}$$

4. (i) Probability that a bag selected has a mass of exactly

$$1 \text{ kg} = 1 - \frac{1}{40} - \frac{1}{160}$$
$$= \frac{31}{32}$$

(ii) Number of bags each with a mass of less than 1 kg

$$=\frac{1}{160} \times 8000$$

= 50

Intermediate

5. Probability that it is labelled Gold = $1 - \frac{1}{5} - \frac{1}{4}$

$$= \frac{11}{20}$$

Fotal number of boxes = 55 ÷ $\frac{11}{20}$
= 100

6. (a) (i) Probability of selecting a vowel = $\frac{1}{7}$

(ii) Probability of selecting a card that bears the letter

$$C = \frac{3}{7}$$
(b) $\frac{3}{7+x} = \frac{1}{7}$

$$21 = 7+x$$

$$x = 14$$

7. (a) (i) Probability that the mark is less than 44

$$=\frac{8}{15}$$

(ii) Probability that the mark is not a prime number

$$=\frac{14}{15}$$

(iii) Probability that the mark is divisible by 11

$$= \frac{3}{15}$$
$$= \frac{1}{5}$$

(b) Probability that the student obtained the badge

$$= \frac{9}{15}$$
$$= \frac{3}{5}$$

(c) Probability that the mark was $39 = \frac{2}{6}$

8. (i)
$$\frac{x}{35+x} = \frac{1}{6}$$

 $6x = 35 + x$
 $5x = 35$
 $x = 7$

(ii) Probability of selecting a sports car = $\frac{35+5}{35+7+5}$ = $\frac{40}{47}$

 $=\frac{1}{3}$

72

Advanced

9.
$$\frac{12 + x + 2}{36 + 12 + 2x + x + 2} = 0.3$$
$$\frac{x + 14}{3x + 50} = 0.3$$
$$x + 14 = 0.9x + 15$$
$$0.1x = 1$$
$$x = 10$$
10. (i)
$$\frac{x}{18 + x} = \frac{3}{5}$$
$$5x = 54 + 3x$$
$$2x = 54$$
$$x = 27$$
(ii) Probability of selecting a pink sweet

$$= \frac{15}{18 + 27 + 10 + 15}$$
$$= \frac{15}{70}$$
$$= \frac{3}{14}$$

New Trend

11. (i)

	Smoke	Do not smoke	Total
Male	18	42	60
Female	8	32	40
Total	26	74	100

- (ii) Probability that a randomly selected smoker is male
 - $=\frac{18}{26}$
 - $=\frac{9}{13}$
- (iii) The respondents of this online survey may not be a good representation of the country's population.